↓ Skip to main content

PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection
Published in
Frontiers in Cellular and Infection Microbiology, April 2018
DOI 10.3389/fcimb.2018.00119
Pubmed ID
Authors

Putri D. Utari, Rita Setroikromo, Barbro N. Melgert, Wim J. Quax

Abstract

Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. Quorum quenching in Gram negative bacteria can be achieved by preventing the accumulation of N-acyl homoserine lactone (AHL) signaling molecule via enzymatic degradation. Previous work by us has shown that PvdQ acylase hydrolyzes AHL signaling molecules irreversibly, thereby inhibiting QS in P. aeruginosa in vitro and in a Caenorhabditis elegans model of P. aeruginosa infection. The aim of the present study is to assess the therapeutic efficacy of intranasally instilled PvdQ acylase in a mouse model of pulmonary P. aeruginosa infection. First, we evaluated the deposition pattern of intranasally administered fluorochrome-tagged PvdQ (PvdQ-VT) in mice at different stages of pulmonary infection by in vivo imaging studies. Following intranasal instillation, PvdQ-VT could be traced in all lung lobes with 42 ± 7.5% of the delivered dose being deposited at 0 h post-bacterial-infection, and 34 ± 5.2% at 72 h post bacterial-infection. We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 17%
Student > Ph. D. Student 12 16%
Student > Doctoral Student 8 10%
Student > Master 7 9%
Researcher 6 8%
Other 7 9%
Unknown 24 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 23%
Immunology and Microbiology 8 10%
Medicine and Dentistry 6 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Agricultural and Biological Sciences 4 5%
Other 5 6%
Unknown 32 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2018.
All research outputs
#14,105,878
of 23,045,021 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#2,484
of 6,525 outputs
Outputs of similar age
#178,827
of 326,650 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#45
of 119 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,525 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.