↓ Skip to main content

Erythrocyte Efferocytosis by the Arterial Wall Promotes Oxidation in Early-Stage Atheroma in Humans

Overview of attention for article published in Frontiers in Cardiovascular Medicine, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
1 X user
patent
1 patent
wikipedia
1 Wikipedia page

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Erythrocyte Efferocytosis by the Arterial Wall Promotes Oxidation in Early-Stage Atheroma in Humans
Published in
Frontiers in Cardiovascular Medicine, August 2017
DOI 10.3389/fcvm.2017.00043
Pubmed ID
Authors

Sandrine Delbosc, Richard Graham Bayles, Jamila Laschet, Veronique Ollivier, Benoit Ho-Tin-Noé, Ziad Touat, Catherine Deschildre, Marion Morvan, Liliane Louedec, Laurent Gouya, Kevin Guedj, Antonino Nicoletti, Jean-Baptiste Michel

Abstract

Since red blood cells (RBCs) are the predominant cellular blood component interacting with the arterial wall, we explored the role of RBCs efferocytosis by vascular smooth muscle cells (vSMCs) in the initiation of human atheroma. The comparison of human healthy aortas with aortic fatty streaks or fibroatheromas revealed that RBC angiophagy is implicated from the earliest stages of atherogenesis, as documented by the concomitant detection of redox-active iron, hemoglobin, glycophorin A, and ceroids. RBCs infiltration in the arterial wall was associated with local lipid and protein oxidation, as well as vascular response (expression of heme oxygenase-1 and of genes related to iron metabolism as well as those encoding for phagocytosis). These effects were recapitulated in vitro when vSMCs were co-cultured with phosphatidyl-exposing senescent (s) RBCs but not with fresh RBCs. VSMCs engulfing sRBC increased their intracellular iron content, accumulated hemoglobin, lipids, and activated their phagolysosomes. Strikingly, injections of sRBCs into rats promoted iron accumulation in the aortic wall. In rabbits, hypercholesterolemia increased circulating senescent RBCs and induced the subendothelial accumulation of iron-rich phagocytic foam cells. RBCs bring cholesterol and iron/heme into the vascular wall and interact with vSMCs that phagocytize them. This study presents a previously unforeseen mechanism of plaque formation that implicates intimal RBC infiltration as one of the initial triggers for foam cell formation and intimal oxidation. Pathogenic effects exerted by several metabolic and hemodynamic factors may rely on their effect on RBC biology, thereby impacting how RBCs interact with the vascular wall.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 17%
Student > Doctoral Student 3 13%
Student > Bachelor 3 13%
Student > Ph. D. Student 3 13%
Student > Master 3 13%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Medicine and Dentistry 5 22%
Biochemistry, Genetics and Molecular Biology 4 17%
Agricultural and Biological Sciences 3 13%
Immunology and Microbiology 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 3 13%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2021.
All research outputs
#4,735,150
of 23,313,051 outputs
Outputs from Frontiers in Cardiovascular Medicine
#710
of 7,215 outputs
Outputs of similar age
#82,015
of 318,357 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#5
of 17 outputs
Altmetric has tracked 23,313,051 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,215 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,357 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.