↓ Skip to main content

Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes

Overview of attention for article published in Frontiers in Cardiovascular Medicine, June 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes
Published in
Frontiers in Cardiovascular Medicine, June 2018
DOI 10.3389/fcvm.2018.00052
Pubmed ID
Authors

Katrina J. Hansen, Michael A. Laflamme, Glenn R. Gaudette

Abstract

Stem cell therapy has the potential to regenerate cardiac function after myocardial infarction. In this study, we sought to examine if fibrin microthread technology could be leveraged to develop a contractile fiber from human pluripotent stem cell derived cardiomyocytes (hPS-CM). hPS-CM seeded onto fibrin microthreads were able to adhere to the microthread and began to contract seven days after initial seeding. A digital speckle tracking algorithm was applied to high speed video data (>60 fps) to determine contraction behaviour including beat frequency, average and maximum contractile strain, and the principal angle of contraction of hPS-CM contracting on the microthreads over 21 days. At day 7, cells seeded on tissue culture plastic beat at 0.83 ± 0.25 beats/sec with an average contractile strain of 4.23±0.23%, which was significantly different from a beat frequency of 1.11 ± 0.45 beats/sec and an average contractile strain of 3.08±0.19% at day 21 (n = 18, p < 0.05). hPS-CM seeded on microthreads beat at 0.84 ± 0.15 beats/sec with an average contractile strain of 3.56±0.22%, which significantly increased to 1.03 ± 0.19 beats/sec and 4.47±0.29%, respectively, at 21 days (n = 18, p < 0.05). At day 7, 27% of the cells had a principle angle of contraction within 20 degrees of the microthread, whereas at day 21, 65% of hPS-CM were contracting within 20 degrees of the microthread (n = 17). Utilizing high speed calcium transient data (>300 fps) of Fluo-4AM loaded hPS-CM seeded microthreads, conduction velocities significantly increased from 3.69 ± 1.76 cm/s at day 7 to 24.26 ± 8.42 cm/s at day 21 (n = 5-6, p < 0.05). hPS-CM seeded microthreads exhibited positive expression for connexin 43, a gap junction protein, between cells. These data suggest that the fibrin microthread is a suitable scaffold for hPS-CM attachment and contraction. In addition, extended culture allows cells to contract in the direction of the thread, suggesting alignment of the cells in the microthread direction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 32%
Student > Master 6 16%
Researcher 4 11%
Student > Bachelor 3 8%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 8 21%
Readers by discipline Count As %
Engineering 8 21%
Biochemistry, Genetics and Molecular Biology 7 18%
Agricultural and Biological Sciences 4 11%
Medicine and Dentistry 3 8%
Materials Science 2 5%
Other 4 11%
Unknown 10 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2021.
All research outputs
#7,750,740
of 25,366,663 outputs
Outputs from Frontiers in Cardiovascular Medicine
#1,360
of 9,167 outputs
Outputs of similar age
#121,658
of 335,499 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#17
of 61 outputs
Altmetric has tracked 25,366,663 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 9,167 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,499 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.