↓ Skip to main content

An “Exercise” in Cardiac Metabolism

Overview of attention for article published in Frontiers in Cardiovascular Medicine, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
13 X users
facebook
1 Facebook page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An “Exercise” in Cardiac Metabolism
Published in
Frontiers in Cardiovascular Medicine, June 2018
DOI 10.3389/fcvm.2018.00066
Pubmed ID
Authors

Stephen C. Kolwicz

Abstract

Research has demonstrated that the high capacity requirements of the heart are satisfied by a preference for oxidation of fatty acids. However, it is well known that a stressed heart, as in pathological hypertrophy, deviates from its inherent profile and relies heavily on glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has been suggested that the chronically lipid overloaded heart augments fatty acid oxidation and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic phenotype. In comparison, classic studies in exercise physiology have provided a basis for the acute metabolic changes that occur during physical activity. During an acute bout of exercise, whole body glucose metabolism increases proportionately to intensity while fatty acid metabolism gradually increases throughout the duration of activity, particularly during moderate intensity. However, the studies in chronic exercise training are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms that govern physiological signaling pathways in the heart. Therefore, the purpose of this review is to discuss the precise changes that chronic exercise training elicits on cardiac metabolism, particularly on substrate utilization. Although conflicting data exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges, which may be a therapeutic strategy to prevent or regress the metabolic phenotype of the hypertrophied heart. This review also expands on the metabolic adaptations that chronic exercise training elicits in amino acid and ketone body metabolism, which have become of increased interest recently. Lastly, challenges with exercise training studies, which could relate to several variables including model, training modality, and metabolic parameter assessed, are examined.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 84 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 11%
Student > Master 9 11%
Researcher 7 8%
Student > Bachelor 6 7%
Student > Postgraduate 5 6%
Other 14 17%
Unknown 34 40%
Readers by discipline Count As %
Medicine and Dentistry 16 19%
Agricultural and Biological Sciences 8 10%
Biochemistry, Genetics and Molecular Biology 6 7%
Sports and Recreations 5 6%
Nursing and Health Professions 5 6%
Other 8 10%
Unknown 36 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2021.
All research outputs
#3,668,496
of 23,313,051 outputs
Outputs from Frontiers in Cardiovascular Medicine
#474
of 7,215 outputs
Outputs of similar age
#71,540
of 329,997 outputs
Outputs of similar age from Frontiers in Cardiovascular Medicine
#9
of 58 outputs
Altmetric has tracked 23,313,051 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,215 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,997 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.