↓ Skip to main content

Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis

Overview of attention for article published in Frontiers in endocrinology, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
patent
1 patent
facebook
1 Facebook page

Readers on

mendeley
171 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis
Published in
Frontiers in endocrinology, January 2013
DOI 10.3389/fendo.2013.00007
Pubmed ID
Authors

Keizo Kanasaki, Gangadhar Taduri, Daisuke Koya

Abstract

Kidney disease associated with diabetes mellitus is a major health problem worldwide. Although established therapeutic strategies, such as appropriate blood glucose control, blood pressure control with renin-angiotensin system blockade, and lipid lowering with statins, are used to treat diabetes, the contribution of diabetic end-stage kidney disease to the total number of cases requiring hemodialysis has increased tremendously in the past two decades. Once renal function starts declining, it can result in a higher frequency of renal and extra-renal events, including cardiovascular events. Therefore, slowing renal function decline is one of the main areas of focus in diabetic nephropathy research, and novel strategies are urgently needed to prevent diabetic kidney disease progression. Regardless of the type of injury and etiology, kidney fibrosis is the commonly the final outcome of progressive kidney diseases, and it results in significant destruction of normal kidney structure and accompanying functional deterioration. Kidney fibrosis is caused by prolonged injury and dysregulation of the normal wound-healing process in association with excess extracellular matrix deposition. Kidney fibroblasts play an important role in the fibrotic process, but the origin of the fibroblasts remains elusive. In addition to the activation of residential fibroblasts, other important sources of fibroblasts have been proposed, such as pericytes, fibrocytes, and fibroblasts originating from epithelial-to-mesenchymal and endothelial-to-mesenchymal transition. Inflammatory cells and cytokines play a vital role In the process of fibroblast activation. In this review, we will analyze the contribution of inflammation to the process of tissue fibrosis, the type of fibroblast activation and the therapeutic strategies targeting the inflammatory pathways in an effort to slow the progression of diabetic kidney disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 171 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
South Africa 1 <1%
Unknown 169 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 15%
Student > Master 20 12%
Student > Bachelor 19 11%
Other 13 8%
Student > Doctoral Student 10 6%
Other 36 21%
Unknown 48 28%
Readers by discipline Count As %
Medicine and Dentistry 38 22%
Biochemistry, Genetics and Molecular Biology 26 15%
Agricultural and Biological Sciences 24 14%
Pharmacology, Toxicology and Pharmaceutical Science 10 6%
Nursing and Health Professions 6 4%
Other 15 9%
Unknown 52 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2021.
All research outputs
#3,225,221
of 25,394,764 outputs
Outputs from Frontiers in endocrinology
#887
of 13,033 outputs
Outputs of similar age
#31,326
of 289,149 outputs
Outputs of similar age from Frontiers in endocrinology
#24
of 210 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,033 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,149 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.