↓ Skip to main content

Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and Their Downstream Targets RANKL and OPG by Mouse Calvarial Osteoblasts In vitro: Inhibition of Bone Resorption by Cyclic Mechanical Strain

Overview of attention for article published in Frontiers in endocrinology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and Their Downstream Targets RANKL and OPG by Mouse Calvarial Osteoblasts In vitro: Inhibition of Bone Resorption by Cyclic Mechanical Strain
Published in
Frontiers in endocrinology, January 2013
DOI 10.3389/fendo.2013.00160
Pubmed ID
Authors

Salvador García-López, Rosina Villanueva, Murray C. Meikle

Abstract

Mechanical strain is an important determinant of bone mass and architecture, and the aim of this investigation was to further understand the role of the cell-cell signaling molecules, IL-1β, TNF-α, and IL-6 in the mechanobiology of bone. Mouse calvarial osteoblasts in monolayer culture were subjected to a cyclic out-of-plane deformation of 0.69% for 6 s, every 90 s for 2-48 h, and the levels of each cytokine plus their downstream targets RANKL and OPG measured in culture supernatants by ELISAs. Mouse osteoblasts constitutively synthesized IL-1β, TNF-α, and IL-6, the production of which was significantly up-regulated in all three by cyclic mechanical strain. RANKL and OPG were also constitutively synthesized; mechanical deformation however, resulted in a down-regulation of RANKL and an up-regulation OPG synthesis. We next tested whether the immunoreactive RANKL and OPG were biologically active in an isolated osteoclast resorption pit assay - this showed that culture supernatants from mechanically deformed cells significantly inhibited osteoclast-mediated resorptive activity across the 48 h time-course. These findings are counterintuitive, because IL-1β, TNF-α, and IL-6 have well-established reputations as bone resorptive agents. Nevertheless, they are pleiotropic molecules with multiple biological activities, underlining the complexity of the biological response of osteoblasts to mechanical deformation, and the need to understand cell-cell signaling in terms of cytokine networks. It is also important to recognize that osteoblasts cultured in vitro are deprived of the mechanical stimuli to which they are exposed in vivo - in other words, the cells are in a physiological default state that in the intact skeleton leads to decreased bone strains below the critical threshold required to maintain normal bone structure.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Master 5 22%
Student > Doctoral Student 4 17%
Researcher 2 9%
Other 1 4%
Other 1 4%
Unknown 5 22%
Readers by discipline Count As %
Medicine and Dentistry 6 26%
Biochemistry, Genetics and Molecular Biology 3 13%
Agricultural and Biological Sciences 3 13%
Neuroscience 2 9%
Sports and Recreations 1 4%
Other 3 13%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2013.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Frontiers in endocrinology
#8,334
of 13,012 outputs
Outputs of similar age
#258,420
of 289,007 outputs
Outputs of similar age from Frontiers in endocrinology
#132
of 210 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,012 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,007 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.