↓ Skip to main content

A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts

Overview of attention for article published in Frontiers in endocrinology, December 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
127 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts
Published in
Frontiers in endocrinology, December 2014
DOI 10.3389/fendo.2014.00208
Pubmed ID
Authors

Marisol Vazquez, Bronwen A. J. Evans, Daniela Riccardi, Sam L. Evans, Jim R. Ralphs, Christopher Mark Dillingham, Deborah J. Mason

Abstract

Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte-osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000-4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte-osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 127 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Switzerland 1 <1%
Italy 1 <1%
Ireland 1 <1%
Japan 1 <1%
Canada 1 <1%
Unknown 120 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 28%
Researcher 19 15%
Student > Master 16 13%
Student > Bachelor 12 9%
Student > Doctoral Student 9 7%
Other 17 13%
Unknown 19 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 22%
Biochemistry, Genetics and Molecular Biology 23 18%
Engineering 19 15%
Medicine and Dentistry 11 9%
Neuroscience 5 4%
Other 17 13%
Unknown 24 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2015.
All research outputs
#3,614,103
of 25,374,917 outputs
Outputs from Frontiers in endocrinology
#1,063
of 13,013 outputs
Outputs of similar age
#48,856
of 368,345 outputs
Outputs of similar age from Frontiers in endocrinology
#8
of 65 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,013 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,345 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.