↓ Skip to main content

Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac

Overview of attention for article published in Frontiers in endocrinology, January 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac
Published in
Frontiers in endocrinology, January 2015
DOI 10.3389/fendo.2014.00240
Pubmed ID
Authors

Paul J. Davis, Gennadi V. Glinsky, Hung-Yun Lin, John T. Leith, Aleck Hercbergs, Heng-Yuan Tang, Osnat Ashur-Fabian, Sandra Incerpi, Shaker A. Mousa

Abstract

Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3'-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Researcher 6 16%
Other 5 13%
Professor 3 8%
Professor > Associate Professor 3 8%
Other 6 16%
Unknown 7 18%
Readers by discipline Count As %
Medicine and Dentistry 12 32%
Biochemistry, Genetics and Molecular Biology 5 13%
Agricultural and Biological Sciences 4 11%
Chemistry 3 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 2 5%
Unknown 10 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2015.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Frontiers in endocrinology
#6,735
of 13,013 outputs
Outputs of similar age
#267,304
of 359,807 outputs
Outputs of similar age from Frontiers in endocrinology
#50
of 67 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,013 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,807 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.