↓ Skip to main content

Bioengineering Beige Adipose Tissue Therapeutics

Overview of attention for article published in Frontiers in endocrinology, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bioengineering Beige Adipose Tissue Therapeutics
Published in
Frontiers in endocrinology, October 2015
DOI 10.3389/fendo.2015.00164
Pubmed ID
Authors

Kevin M. Tharp, Andreas Stahl

Abstract

Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
Brazil 1 1%
Unknown 83 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 22%
Researcher 14 16%
Student > Master 10 12%
Student > Bachelor 9 10%
Professor > Associate Professor 6 7%
Other 16 19%
Unknown 12 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 27%
Agricultural and Biological Sciences 17 20%
Medicine and Dentistry 16 19%
Engineering 5 6%
Chemistry 3 3%
Other 7 8%
Unknown 15 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2015.
All research outputs
#2,299,292
of 25,394,764 outputs
Outputs from Frontiers in endocrinology
#607
of 13,033 outputs
Outputs of similar age
#32,038
of 294,513 outputs
Outputs of similar age from Frontiers in endocrinology
#3
of 47 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,033 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,513 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.