↓ Skip to main content

Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat

Overview of attention for article published in Frontiers in endocrinology, November 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat
Published in
Frontiers in endocrinology, November 2015
DOI 10.3389/fendo.2015.00169
Pubmed ID
Authors

Chunhui Jiang, Liangju Kuang, Madeline P. Merkel, Feng Yue, Mario Alberto Cano-Vega, Naagarajan Narayanan, Shihuan Kuang, Meng Deng

Abstract

Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Bachelor 7 21%
Unspecified 2 6%
Other 2 6%
Researcher 2 6%
Other 7 21%
Unknown 5 15%
Readers by discipline Count As %
Engineering 7 21%
Agricultural and Biological Sciences 5 15%
Chemical Engineering 4 12%
Unspecified 2 6%
Biochemistry, Genetics and Molecular Biology 2 6%
Other 8 24%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2015.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Frontiers in endocrinology
#5,754
of 13,009 outputs
Outputs of similar age
#203,236
of 297,470 outputs
Outputs of similar age from Frontiers in endocrinology
#26
of 38 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,009 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,470 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.