↓ Skip to main content

Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin

Overview of attention for article published in Frontiers in endocrinology, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin
Published in
Frontiers in endocrinology, August 2016
DOI 10.3389/fendo.2016.00113
Pubmed ID
Authors

Cristina Salmerón, Natàlia Riera-Heredia, Joaquim Gutiérrez, Isabel Navarro, Encarnación Capilla

Abstract

During the last decades, adipogenesis has become an emerging field of study in aquaculture due to the relevance of the adipose tissue in many physiological processes and its connection with the endocrine system. In this sense, recent studies have translated into the establishment of preadipocyte culture models from several fish species, sometimes lacking information on the mRNA levels of adipogenic genes. Thus, the aim of this study was to determine the gene expression profile of gilthead sea bream (Sparus aurata) primary cultured mesenchymal stem cells (MSCs) from different origin (adipose tissue and vertebra bone) during adipogenesis. Both cell types differentiated into adipocyte-like cells, accumulating lipids inside their cytoplasm. Adipocyte differentiation of MSCs from adipose tissue resulted in downregulation of several adipocyte-related genes (such as lpl, hsl, pparα, pparγ and gapdh2) at day 4, gapdh1 at day 8, and fas and pparβ at day 12. In contrast, differences in lxrα mRNA expression were not observed, while g6pdh levels increased during adipocyte maturation. Gapdh and Pparγ protein levels were also detected in preadipocyte cultures; however, only the former increased its expression during adipogenesis. Moreover, differentiation of bone-derived cells into adipocytes also resulted in the downregulation of several adipocyte gene markers, such as fas and g6pdh at day 10 and hsl, pparβ, and lxrα at day 15. On the other hand, the osteogenic genes fib1a, mgp, and op remained stable, but an increase in runx2 expression at day 20 was observed. In summary, the present study demonstrates that gilthead sea bream MSCs, from both adipose tissue and bone, differentiate into adipocyte-like cells, although revealed some kind of species- and cell lineage-specific regulation with regards to gene expression. Present data also provide novel insights into some of the potential key genes controlling adipogenesis in gilthead sea bream that can help to better understand the regulation of lipid storage in fish.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 22%
Researcher 5 14%
Student > Bachelor 3 8%
Student > Master 2 5%
Student > Doctoral Student 1 3%
Other 4 11%
Unknown 14 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 35%
Biochemistry, Genetics and Molecular Biology 5 14%
Veterinary Science and Veterinary Medicine 2 5%
Unspecified 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 14 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2016.
All research outputs
#20,674,485
of 25,394,764 outputs
Outputs from Frontiers in endocrinology
#6,741
of 13,030 outputs
Outputs of similar age
#277,352
of 355,367 outputs
Outputs of similar age from Frontiers in endocrinology
#28
of 45 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,030 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,367 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.