↓ Skip to main content

Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis

Overview of attention for article published in Frontiers in endocrinology, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
11 X users
facebook
4 Facebook pages

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Gadolinium-Based Contrast Agents on Thyroid Hormone Receptor Action and Thyroid Hormone-Induced Cerebellar Purkinje Cell Morphogenesis
Published in
Frontiers in endocrinology, August 2016
DOI 10.3389/fendo.2016.00115
Pubmed ID
Authors

Winda Ariyani, Toshiharu Iwasaki, Wataru Miyazaki, Erdene Khongorzul, Takahito Nakajima, Satomi Kameo, Hiroshi Koyama, Yoshito Tsushima, Noriyuki Koibuchi

Abstract

Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10(-8) to 10(-6)M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10(-5) to 10(-4)M), with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10(-9)M T4 was augmented by low-dose Gd-DTPA-BMA (10(-7)M) but was suppressed by higher dose (10(-5)M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10(-9)M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10(-5)M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker than that of the other compounds. These results indicate that exposure to specific GBCAs may, at least in part, cause toxic effects in the brain by disrupting the action of THs on TRs. The toxic effects of GBCAs may depend on the chemical structure of GBCA and the dose. Thus, it is very important to choose appropriate GBCAs for imaging to prevent adverse side effects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Other 7 14%
Student > Ph. D. Student 7 14%
Student > Master 7 14%
Researcher 4 8%
Professor > Associate Professor 4 8%
Other 9 18%
Unknown 13 25%
Readers by discipline Count As %
Medicine and Dentistry 20 39%
Nursing and Health Professions 4 8%
Biochemistry, Genetics and Molecular Biology 2 4%
Neuroscience 2 4%
Chemistry 2 4%
Other 5 10%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2022.
All research outputs
#5,165,888
of 25,374,647 outputs
Outputs from Frontiers in endocrinology
#1,486
of 13,012 outputs
Outputs of similar age
#81,473
of 349,724 outputs
Outputs of similar age from Frontiers in endocrinology
#4
of 45 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,012 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 349,724 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.