↓ Skip to main content

Angiotensins and Huntington’s Disease: A Study on Immortalized Progenitor Striatal Cell Lines

Overview of attention for article published in Frontiers in endocrinology, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Angiotensins and Huntington’s Disease: A Study on Immortalized Progenitor Striatal Cell Lines
Published in
Frontiers in endocrinology, May 2017
DOI 10.3389/fendo.2017.00108
Pubmed ID
Authors

Walmor C. De Mello, Yamil Gerena, Sylvette Ayala-Peña

Abstract

Neurons from mouse models of Huntington's disease (HD) exhibit altered electrophysiological properties, potentially contributing to neuronal dysfunction and neurodegeneration. The renin-angiotensin system (RAS) is a potential contributor to the pathophysiology of neurodegenerative diseases. However, the role of angiotensin II (Ang II) and angiotensin (1-7) has not been characterized in HD. We investigated the influence of Ang II and angiotensin (1-7) on total potassium current using immortalized progenitor mutant huntingtin-expressing (Q111) and wild-type (Q7) cell lines. Measurements of potassium current were performed using the whole cell configuration of pCLAMP. The results showed that (1) the effect of Ang II administered to the bath caused a negligible effect on potassium current in mutant Q111 cells compared with wild-type Q7 cells and that intracellular administration of Ang II reduced the potassium current in wild type but not in mutant cells; (2) the small effect of Ang II was abolished by losartan; (3) intracellular administration of Ang II performed in mutant huntingtin-expressing Q111 cells revealed a negligible effect of the peptide on potassium current; (4) flow cytometer analysis indicated a low expression of Ang II AT1 receptors in mutant Q111 cells; (5) mutant huntingtin-expressing striatal cells are highly sensitive to Ang (1-7) and that the effect of Ang (1-7) is related to the activation of Mas receptors. In conclusion, mutant huntingtin-expressing cells showed a negligible effect of Ang II on potassium current, a result probably due to the reduced expression of AT1 receptors at the surface cell membrane. In contrast, administration of Ang (1-7) to the bath showed a significant decline of the potassium current in mutant cells, an effect dependent on the activation of Mas receptors. Ang II had an intracrine effect in wild-type cells and Ang (1-7) exerted a significant effect in mutant huntingtin-expressing striatal cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 29%
Student > Bachelor 2 29%
Other 1 14%
Unknown 2 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 14%
Business, Management and Accounting 1 14%
Agricultural and Biological Sciences 1 14%
Neuroscience 1 14%
Unknown 3 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#8,338
of 13,018 outputs
Outputs of similar age
#286,203
of 327,119 outputs
Outputs of similar age from Frontiers in endocrinology
#62
of 89 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,018 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,119 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 89 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.