↓ Skip to main content

Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring

Overview of attention for article published in Frontiers in endocrinology, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring
Published in
Frontiers in endocrinology, September 2017
DOI 10.3389/fendo.2017.00245
Pubmed ID
Authors

Clare M. Reynolds, Stephanie A. Segovia, Mark H. Vickers

Abstract

Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut-brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 81 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 17%
Student > Doctoral Student 10 12%
Student > Bachelor 10 12%
Researcher 8 10%
Student > Master 7 9%
Other 25 31%
Unknown 7 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 20%
Medicine and Dentistry 11 14%
Agricultural and Biological Sciences 10 12%
Neuroscience 7 9%
Nursing and Health Professions 5 6%
Other 19 23%
Unknown 13 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2017.
All research outputs
#3,395,676
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#983
of 13,018 outputs
Outputs of similar age
#59,981
of 328,164 outputs
Outputs of similar age from Frontiers in endocrinology
#12
of 109 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,018 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,164 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.