↓ Skip to main content

S-equol Exerts Estradiol-Like Anorectic Action with Minimal Stimulation of Estrogen Receptor-α in Ovariectomized Rats

Overview of attention for article published in Frontiers in endocrinology, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
S-equol Exerts Estradiol-Like Anorectic Action with Minimal Stimulation of Estrogen Receptor-α in Ovariectomized Rats
Published in
Frontiers in endocrinology, October 2017
DOI 10.3389/fendo.2017.00281
Pubmed ID
Authors

Yuri Nishimura, Kaori Mabuchi, Azusa Takano, Yayoi Hara, Hiroko Negishi, Keiko Morimoto, Tomomi Ueno, Shigeto Uchiyama, Akira Takamata

Abstract

Chronic estrogen replacement in ovariectomized rats attenuates food intake and enhances c-Fos expression in the suprachiasmatic nucleus (SCN), specifically during the light phase. S-equol, a metabolite of daidzein, has a strong affinity for estrogen receptor (ER)-β and exerts estrogenic activity. The purpose of the present study was to elucidate whether S-equol exerts an estrogen-like anorectic effect by modifying the regulation of the circadian feeding rhythm in ovariectomized rats. Ovariectomized female Wistar rats were divided into an estradiol (E2)-replaced group and cholesterol (vehicle; Veh)-treated group. These animals were fed either a standard diet or an S-equol-containing diet for 13 days. Then, the brain, uterus, and pituitary gland were collected along with blood samples. In the rats fed the standard diet, E2 replacement attenuated food intake (P < 0.001) and enhanced c-Fos expression in the SCN (P < 0.01) during the light phase. Dietary S-equol supplementation reduced food intake (P < 0.01) and increased c-Fos expression in the SCN (P < 0.01) in the Veh-treated rats but not in the E2-replaced rats during the light phase. Dietary S-equol did not alter ER-α expression in the medial preoptic area or the arcuate nucleus, nor did dietary S-equol affect pituitary gland weight or endometrial epithelial layer thickness. By contrast, E2 replacement not only markedly decreased ER-α expression in these brain areas (P < 0.001) but also increased both the pituitary gland weight (P < 0.001) and the endometrial epithelial layer thickness (P < 0.001). Thus, dietary S-equol acts as an anorectic by modifying the diurnal feeding pattern in a manner similar to E2 in ovariectomized rats; however, the mechanism of action is not likely to be mediated by ER-α. The data suggest a possibility that dietary S-equol could be an alternative to hormone replacement therapy for the prevention of hyperphagia and obesity with a lower risk of adverse effects induced by ER-α stimulation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Student > Bachelor 3 16%
Student > Doctoral Student 2 11%
Other 2 11%
Student > Ph. D. Student 2 11%
Other 4 21%
Unknown 2 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Medicine and Dentistry 4 21%
Neuroscience 2 11%
Agricultural and Biological Sciences 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 2 11%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#8,338
of 13,018 outputs
Outputs of similar age
#295,890
of 336,759 outputs
Outputs of similar age from Frontiers in endocrinology
#78
of 117 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,018 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,759 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.