↓ Skip to main content

DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence

Overview of attention for article published in Frontiers in endocrinology, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence
Published in
Frontiers in endocrinology, February 2018
DOI 10.3389/fendo.2018.00060
Pubmed ID
Authors

Kristina Jakob, Hanna Ehrentreich, Sarah K. C. Holtfrerich, Luise Reimers, Esther K. Diekhof

Abstract

Hormone by genotype interactions have been widely ignored by cognitive neuroscience. Yet, the dependence of cognitive performance on both baseline dopamine (DA) and current 17ß-estradiol (E2) level argues for their combined effect also in the context of reinforcement learning. Here, we assessed how the interaction between the natural rise of E2 in the late follicular phase (FP) and the 40 base-pair variable number tandem repeat polymorphism of the dopamine transporter (DAT1) affects reinforcement learning capacity. 30 women with a regular menstrual cycle performed a probabilistic feedback learning task twice during the early and late FP. In addition, 39 women, who took hormonal contraceptives (HC) to suppress natural ovulation, were tested during the "pill break" and the intake phase of HC. The present data show that DAT1-genotype may interact with transient hormonal state, but only in women with a natural menstrual cycle. We found that carriers of the 9-repeat allele (9RP) experienced a significant decrease in the ability to avoid punishment from early to late FP. Neither homozygote subjects of the 10RP allele, nor subjects from the HC group showed a change in behavior between phases. These data are consistent with neurobiological studies that found that rising E2 may reverse DA transporter function and could enhance DA efflux, which would in turn reduce punishment sensitivity particularly in subjects with a higher transporter density to begin with. Taken together, the present results, although based on a small sample, add to the growing understanding of the complex interplay between different physiological modulators of dopaminergic transmission. They may not only point out the necessity to control for hormonal state in behavioral genetic research, but may offer new starting points for studies in clinical settings.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 16%
Student > Doctoral Student 4 11%
Student > Bachelor 4 11%
Student > Ph. D. Student 4 11%
Researcher 3 8%
Other 2 5%
Unknown 14 38%
Readers by discipline Count As %
Neuroscience 7 19%
Psychology 3 8%
Agricultural and Biological Sciences 2 5%
Social Sciences 2 5%
Medicine and Dentistry 2 5%
Other 2 5%
Unknown 19 51%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#8,340
of 13,021 outputs
Outputs of similar age
#304,572
of 344,055 outputs
Outputs of similar age from Frontiers in endocrinology
#100
of 160 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,055 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 160 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.