↓ Skip to main content

Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Overview of attention for article published in Frontiers in endocrinology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test
Published in
Frontiers in endocrinology, March 2018
DOI 10.3389/fendo.2018.00082
Pubmed ID
Authors

Rohit Babbar, Martin Heni, Andreas Peter, Martin Hrabě de Angelis, Hans-Ulrich Häring, Andreas Fritsche, Hubert Preissl, Bernhard Schölkopf, Róbert Wagner

Abstract

Impaired glucose tolerance (IGT) is diagnosed by a standardized oral glucose tolerance test (OGTT). However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state. Given a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA), proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year. The most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78). For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77. Machine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a subsequent OGTT.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 15%
Student > Ph. D. Student 6 15%
Student > Bachelor 4 10%
Researcher 4 10%
Other 2 5%
Other 4 10%
Unknown 13 33%
Readers by discipline Count As %
Medicine and Dentistry 9 23%
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Computer Science 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Business, Management and Accounting 1 3%
Other 4 10%
Unknown 17 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2018.
All research outputs
#14,541,990
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#2,865
of 13,021 outputs
Outputs of similar age
#172,583
of 348,698 outputs
Outputs of similar age from Frontiers in endocrinology
#59
of 192 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,698 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 192 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.