↓ Skip to main content

Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity

Overview of attention for article published in Frontiers in endocrinology, May 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
7 X users
facebook
1 Facebook page

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
118 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity
Published in
Frontiers in endocrinology, May 2018
DOI 10.3389/fendo.2018.00245
Pubmed ID
Authors

Stephanie Post, Galina Karashchuk, John D. Wade, Waseem Sajid, Pierre De Meyts, Marc Tatar

Abstract

Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 118 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 118 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 20%
Student > Master 15 13%
Student > Doctoral Student 12 10%
Student > Bachelor 12 10%
Researcher 10 8%
Other 18 15%
Unknown 27 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 57 48%
Agricultural and Biological Sciences 15 13%
Neuroscience 9 8%
Immunology and Microbiology 3 3%
Environmental Science 2 2%
Other 5 4%
Unknown 27 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2018.
All research outputs
#7,963,683
of 25,382,440 outputs
Outputs from Frontiers in endocrinology
#2,313
of 13,021 outputs
Outputs of similar age
#128,941
of 344,432 outputs
Outputs of similar age from Frontiers in endocrinology
#54
of 216 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 13,021 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,432 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 216 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.