↓ Skip to main content

On protocols and measures for the validation of supervised methods for the inference of biological networks

Overview of attention for article published in Frontiers in Genetics, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On protocols and measures for the validation of supervised methods for the inference of biological networks
Published in
Frontiers in Genetics, January 2013
DOI 10.3389/fgene.2013.00262
Pubmed ID
Authors

Marie Schrynemackers, Robert Küffner, Pierre Geurts

Abstract

Networks provide a natural representation of molecular biology knowledge, in particular to model relationships between biological entities such as genes, proteins, drugs, or diseases. Because of the effort, the cost, or the lack of the experiments necessary for the elucidation of these networks, computational approaches for network inference have been frequently investigated in the literature. In this paper, we examine the assessment of supervised network inference. Supervised inference is based on machine learning techniques that infer the network from a training sample of known interacting and possibly non-interacting entities and additional measurement data. While these methods are very effective, their reliable validation in silico poses a challenge, since both prediction and validation need to be performed on the basis of the same partially known network. Cross-validation techniques need to be specifically adapted to classification problems on pairs of objects. We perform a critical review and assessment of protocols and measures proposed in the literature and derive specific guidelines how to best exploit and evaluate machine learning techniques for network inference. Through theoretical considerations and in silico experiments, we analyze in depth how important factors influence the outcome of performance estimation. These factors include the amount of information available for the interacting entities, the sparsity and topology of biological networks, and the lack of experimentally verified non-interacting pairs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Russia 1 2%
China 1 2%
Unknown 58 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 30%
Researcher 10 16%
Student > Bachelor 6 10%
Professor 4 7%
Student > Master 4 7%
Other 10 16%
Unknown 9 15%
Readers by discipline Count As %
Computer Science 17 28%
Agricultural and Biological Sciences 13 21%
Biochemistry, Genetics and Molecular Biology 9 15%
Engineering 4 7%
Medicine and Dentistry 3 5%
Other 5 8%
Unknown 10 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2016.
All research outputs
#13,408,481
of 23,344,526 outputs
Outputs from Frontiers in Genetics
#2,990
of 12,363 outputs
Outputs of similar age
#157,842
of 283,898 outputs
Outputs of similar age from Frontiers in Genetics
#124
of 318 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,363 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,898 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 318 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.