↓ Skip to main content

Exploring the potential benefits of stratified false discovery rates for region-based testing of association with rare genetic variation

Overview of attention for article published in Frontiers in Genetics, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring the potential benefits of stratified false discovery rates for region-based testing of association with rare genetic variation
Published in
Frontiers in Genetics, January 2014
DOI 10.3389/fgene.2014.00011
Pubmed ID
Authors

ChangJiang Xu, Antonio Ciampi, Celia M. T. Greenwood, The UK10K Consortium

Abstract

When analyzing the data that arises from exome or whole-genome sequencing studies, window-based tests, (i.e., tests that jointly analyze all genetic data in a small genomic region), are very popular. However, power is known to be quite low for finding associations with phenotypes using these tests, and therefore a variety of analytic strategies may be employed to potentially improve power. Using sequencing data of all of chromosome 3 from an interim release of data on 2432 individuals from the UK10K project, we simulated phenotypes associated with rare genetic variation, and used the results to explore the window-based test power. We asked two specific questions: firstly, whether there could be substantial benefits associated with incorporating information from external annotation on the genetic variants, and secondly whether the false discovery rate (FDRs) would be a useful metric for assessing significance. Although, as expected, there are benefits to using additional information (such as annotation) when it is associated with causality, we confirmed the general pattern of low sensitivity and power for window-based tests. For our chosen example, even when power is high to detect some of the associations, many of the regions containing causal variants are not detectable, despite using lax significance thresholds and optimal analytic methods. Furthermore, our estimated FDR values tended to be much smaller than the true FDRs. Long-range correlations between variants-due to linkage disequilibrium-likely explain some of this bias. A more sophisticated approach to using the annotation information may improve power, however, many causal variants of realistic effect sizes may simply be undetectable, at least with this sample size. Perhaps annotation information could assist in distinguishing windows containing causal variants from windows that are merely correlated with causal variants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Bachelor 3 19%
Student > Master 2 13%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 6%
Other 3 19%
Unknown 1 6%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 31%
Agricultural and Biological Sciences 4 25%
Mathematics 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Psychology 1 6%
Other 1 6%
Unknown 3 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2014.
All research outputs
#13,907,430
of 22,741,406 outputs
Outputs from Frontiers in Genetics
#3,503
of 11,757 outputs
Outputs of similar age
#169,898
of 308,137 outputs
Outputs of similar age from Frontiers in Genetics
#35
of 62 outputs
Altmetric has tracked 22,741,406 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,757 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,137 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.