↓ Skip to main content

Biosynthesis and functions of sulfur modifications in tRNA

Overview of attention for article published in Frontiers in Genetics, April 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users
peer_reviews
1 peer review site
googleplus
1 Google+ user

Readers on

mendeley
107 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biosynthesis and functions of sulfur modifications in tRNA
Published in
Frontiers in Genetics, April 2014
DOI 10.3389/fgene.2014.00067
Pubmed ID
Authors

Naoki Shigi

Abstract

Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s(2)U), 4-thiouridine (s(4)U), 2-thiocytidine (s(2)C), and 2-methylthioadenosine (ms(2)A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific "modification enzymes" activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Belgium 1 <1%
Unknown 105 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 21%
Researcher 18 17%
Student > Master 16 15%
Student > Bachelor 10 9%
Student > Doctoral Student 6 6%
Other 11 10%
Unknown 23 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 35 33%
Agricultural and Biological Sciences 27 25%
Chemistry 11 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 3%
Computer Science 1 <1%
Other 6 6%
Unknown 24 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2014.
All research outputs
#7,418,252
of 23,344,526 outputs
Outputs from Frontiers in Genetics
#2,363
of 12,363 outputs
Outputs of similar age
#71,783
of 226,919 outputs
Outputs of similar age from Frontiers in Genetics
#34
of 82 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 12,363 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,919 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.