↓ Skip to main content

Embryo transfers between C57BL/6J and DBA/2J mice: Examination of a maternal effect on ethanol teratogenesis

Overview of attention for article published in Frontiers in Genetics, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Embryo transfers between C57BL/6J and DBA/2J mice: Examination of a maternal effect on ethanol teratogenesis
Published in
Frontiers in Genetics, December 2014
DOI 10.3389/fgene.2014.00436
Pubmed ID
Authors

David Gilliam

Abstract

Genetic factors influence fetal alcohol spectrum disorders (FASDs) in both humans and animals. Experiments using inbred and selectively bred mouse stocks that controlled for (1) ethanol dose, (2) maternal and fetal blood ethanol levels, and (3) fetal developmental exposure stage, show genotype can affect teratogenic outcome. Other experiments distinguish the teratogenic effects mediated by maternal genotype from those mediated by fetal genotype. One technique to distinguish maternal versus fetal genotype effect is to utilize embryo transfers. This study is the first to examine ethanol teratogenesis - fetal weight deficits and mortality, and digit, kidney, and vertebral malformations - in C57BL/6J (B6) and DBA/2J (D2) fetuses that were transferred as blastocysts into B6 and D2 dams. We hypothesized that, following maternal alcohol exposure, B6 and D2 fetuses gestating within B6 mothers, as compared to D2 mothers, will exhibit a higher frequency of malformations. On day 9 of pregnancy, females were intubated (IG) with either 5.8 g/kg ethanol (E) or maltose-dextrin (MD). Other females were mated within strain and treated with either ethanol or maltose, or were not exposed to either treatment. Implantation rates were affected by genotype. Results show more B6 embryos implanted into D2 females than B6 females (p < 0.05; 47% vs. 23%, respectively). There was no difference in the percentage of D2 embryos implanting into B6 and D2 females (14 and 16%, respectfully). Litter mortality averaged 24% across all experimental groups. Overall, in utero ethanol exposure reduced mean litter weight compared to maltose treatment (E = 1.01 g; MD = 1.19 g; p < 0.05); but maltose exposed litters with transferred embryos weighed more than similarly treated natural litters (1.30 g vs. 1.11 g; p < 0.05). Approximately 50% of all ethanol exposed B6 fetuses exhibited some malformation (digit, vertebral, and/or kidney) regardless of whether they were transferred into a B6 or D2 female, or were naturally conceived. This suggests the D2 maternal uterine environment did not offer any protection against ethanol teratogenesis for B6 fetuses. One of the questions remaining is the how the B6 uterine environment affects D2 teratogenesis. No definitive conclusions can be drawn because too few viable D2 litters were produced.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 30%
Student > Bachelor 5 17%
Researcher 3 10%
Student > Master 3 10%
Professor 1 3%
Other 3 10%
Unknown 6 20%
Readers by discipline Count As %
Medicine and Dentistry 7 23%
Biochemistry, Genetics and Molecular Biology 5 17%
Agricultural and Biological Sciences 4 13%
Nursing and Health Professions 1 3%
Immunology and Microbiology 1 3%
Other 3 10%
Unknown 9 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2014.
All research outputs
#20,246,428
of 22,774,233 outputs
Outputs from Frontiers in Genetics
#8,568
of 11,759 outputs
Outputs of similar age
#302,446
of 361,188 outputs
Outputs of similar age from Frontiers in Genetics
#104
of 112 outputs
Altmetric has tracked 22,774,233 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,759 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,188 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.