↓ Skip to main content

The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB

Overview of attention for article published in Frontiers in Genetics, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB
Published in
Frontiers in Genetics, June 2015
DOI 10.3389/fgene.2015.00225
Pubmed ID
Authors

Celeste López-Aguilar, Cristina Romero-López, Manuel Espinosa, Alfredo Berzal-Herranz, Gloria del Solar

Abstract

Rolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication. Structure analysis of RNAII revealed that it folds into an 8-bp-long stem containing a 1-nt bulge and closed by a 6-nt apical loop. This hairpin is flanked by a 17-nt-long single-stranded 5'-tail and an 8-nt-long 3'-terminal U-rich stretch. Here, the 3' and 5' regions of the 5'-tail of RNAII are shown to play a critical role in the binding to the target mRNA and in the inhibition of repB translation, respectively. In contrast, the apical loop of the single hairpin of RNAII plays a rather secondary role and the upper stem region hardly contributes to the binding or inhibition processes. The entire 5'-tail is required for efficient inhibition of repB translation, though only the 8-nt-long region adjacent to the hairpin seems to be essential for rapid binding to the mRNA. These results show that a "kissing" interaction involving base-pairing between complementary hairpin loops in RNAII and mRNA is not critical for efficient RNA/RNA binding or repB translation inhibition. A singular binding mechanism is envisaged whereby initial pairing between complementary single-stranded regions in the antisense and sense RNAs progresses upwards into the corresponding hairpin stems to form the intermolecular duplex.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Iran, Islamic Republic of 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 18%
Student > Master 2 12%
Other 1 6%
Student > Doctoral Student 1 6%
Student > Ph. D. Student 1 6%
Other 3 18%
Unknown 6 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 29%
Biochemistry, Genetics and Molecular Biology 2 12%
Business, Management and Accounting 1 6%
Medicine and Dentistry 1 6%
Unknown 8 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2015.
All research outputs
#18,417,643
of 22,815,414 outputs
Outputs from Frontiers in Genetics
#7,038
of 11,784 outputs
Outputs of similar age
#188,899
of 262,924 outputs
Outputs of similar age from Frontiers in Genetics
#68
of 84 outputs
Altmetric has tracked 22,815,414 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,784 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,924 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.