↓ Skip to main content

Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data

Overview of attention for article published in Frontiers in Genetics, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
6 X users

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data
Published in
Frontiers in Genetics, May 2016
DOI 10.3389/fgene.2016.00076
Pubmed ID
Authors

Matthew T. Oetjens, Kristin Brown-Gentry, Robert Goodloe, Holli H. Dilks, Dana C. Crawford

Abstract

Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as several large epidemiologic and clinic-based studies lack genome-wide data. One such large epidemiologic-based study lacking genome-wide data accessible to investigators is the National Health and Nutrition Examination Surveys (NHANES), population-based cross-sectional surveys of Americans linked to demographic, health, and lifestyle data conducted by the Centers for Disease Control and Prevention. DNA samples (n = 14,998) were extracted from biospecimens from consented NHANES participants between 1991-1994 (NHANES III, phase 2) and 1999-2002 and represent three major self-identified racial/ethnic groups: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We as the Epidemiologic Architecture for Genes Linked to Environment study genotyped candidate gene and GWAS-identified index variants in NHANES as part of the larger Population Architecture using Genomics and Epidemiology I study for collaborative genetic association studies. To enable basic quality control such as estimation of genetic ancestry to control for population stratification in NHANES san genome-wide data, we outline here strategies that use limited genetic data to identify the markers optimal for characterizing genetic ancestry. From among 411 and 295 autosomal SNPs available in NHANES III and NHANES 1999-2002, we demonstrate that markers with ancestry information can be identified to estimate global ancestry. Despite limited resolution, global genetic ancestry is highly correlated with self-identified race for the majority of participants, although less so for ethnicity. Overall, the strategies outlined here for a large epidemiologic study can be applied to other datasets accessible for genotype-phenotype studies but are sans genome-wide data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 24%
Researcher 5 24%
Student > Ph. D. Student 4 19%
Student > Doctoral Student 2 10%
Student > Bachelor 2 10%
Other 2 10%
Unknown 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 29%
Biochemistry, Genetics and Molecular Biology 4 19%
Social Sciences 3 14%
Nursing and Health Professions 2 10%
Medicine and Dentistry 2 10%
Other 2 10%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2021.
All research outputs
#14,453,180
of 25,142,442 outputs
Outputs from Frontiers in Genetics
#3,101
of 13,524 outputs
Outputs of similar age
#145,151
of 304,925 outputs
Outputs of similar age from Frontiers in Genetics
#32
of 80 outputs
Altmetric has tracked 25,142,442 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,524 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 304,925 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.