↓ Skip to main content

Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool

Overview of attention for article published in Frontiers in Genetics, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool
Published in
Frontiers in Genetics, July 2016
DOI 10.3389/fgene.2016.00134
Pubmed ID
Authors

Karen J. Meaburn

Abstract

In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 28%
Researcher 18 20%
Student > Bachelor 12 14%
Student > Master 11 13%
Student > Doctoral Student 7 8%
Other 10 11%
Unknown 5 6%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 38%
Biochemistry, Genetics and Molecular Biology 31 35%
Medicine and Dentistry 8 9%
Computer Science 3 3%
Immunology and Microbiology 1 1%
Other 6 7%
Unknown 6 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2016.
All research outputs
#13,124,430
of 22,881,154 outputs
Outputs from Frontiers in Genetics
#2,917
of 11,919 outputs
Outputs of similar age
#192,836
of 365,298 outputs
Outputs of similar age from Frontiers in Genetics
#18
of 53 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,919 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,298 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.