↓ Skip to main content

Spatially Heterogeneous Environmental Selection Strengthens Evolution of Reproductively Isolated Populations in a Dobzhansky–Muller System of Hybrid Incompatibility

Overview of attention for article published in Frontiers in Genetics, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatially Heterogeneous Environmental Selection Strengthens Evolution of Reproductively Isolated Populations in a Dobzhansky–Muller System of Hybrid Incompatibility
Published in
Frontiers in Genetics, November 2016
DOI 10.3389/fgene.2016.00209
Pubmed ID
Authors

Samuel A. Cushman, Erin L. Landguth

Abstract

Within-species hybrid incompatibility can arise when combinations of alleles at more than one locus have low fitness but where possession of one of those alleles has little or no fitness consequence for the carriers. Limited dispersal with small numbers of mate potentials alone can lead to the evolution of clusters of reproductively isolated genotypes despite the absence of any geographical barriers or heterogeneous selection. In this paper, we explore how adding heterogeneous natural selection on the genotypes (e.g., gene environment associations) that are involved in reproductive incompatibility affects the frequency, size and duration of evolution of reproductively isolated clusters. We conducted a simulation experiment that varied landscape heterogeneity, dispersal ability, and strength of selection in a continuously distributed population. In our simulations involving spatially heterogeneous selection, strong patterns of adjacency of mutually incompatible genotypes emerged such that these clusters were truly reproductively isolated from each other, with no reproductively compatible "bridge" individuals in the intervening landscape to allow gene flow between the clusters. This pattern was strong across levels of gene flow and strength of selection, suggesting that even relatively weak selection acting in the context of strong gene flow may produce reproductively isolated clusters that are large and persistent, enabling incipient speciation in a continuous population without geographic isolation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 32%
Student > Ph. D. Student 4 21%
Researcher 4 21%
Student > Doctoral Student 1 5%
Professor > Associate Professor 1 5%
Other 0 0%
Unknown 3 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 47%
Biochemistry, Genetics and Molecular Biology 3 16%
Environmental Science 3 16%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2016.
All research outputs
#18,483,671
of 22,903,988 outputs
Outputs from Frontiers in Genetics
#7,081
of 11,949 outputs
Outputs of similar age
#303,116
of 415,133 outputs
Outputs of similar age from Frontiers in Genetics
#35
of 45 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,949 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,133 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.