↓ Skip to main content

Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of Southeastern Brazil

Overview of attention for article published in Frontiers in Genetics, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
9 X users
facebook
2 Facebook pages

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of Southeastern Brazil
Published in
Frontiers in Genetics, December 2017
DOI 10.3389/fgene.2017.00199
Pubmed ID
Authors

Sergio M. Q. Lima, Waldir M. Berbel-Filho, Thais F. P. Araújo, Henrique Lazzarotto, Andrey Tatarenkov, John C. Avise

Abstract

Paleo-drainage connections and headwater stream-captures are two main historical processes shaping the distribution of strictly freshwater fishes. Recently, bathymetric-based methods of paleo-drainage reconstruction have opened new possibilities to investigate how these processes have shaped the genetic structure of freshwater organisms. In this context, the present study used paleo-drainage reconstructions and single-locus cluster delimitation analyses to examine genetic structure on the whole distribution of Pareiorhaphis garbei, a 'near threatened' armored catfish from the Fluminense freshwater ecoregion in Southeastern Brazil. Sequences of two mitochondrial genes (cytochrome b and cytochrome c oxidase subunit 1) were obtained from five sampling sites in four coastal drainages: Macaé (KAE), São João (SJO), Guapi-Macacu [sub-basins Guapiaçu (GAC) and Guapimirim (GMI)], and Santo Aleixo (SAL). Pronounced genetic structure was found, involving 10 haplotypes for cytB and 6 for coi, with no haplotypes shared between localities. Coalescent-based delineation methods as well as distance-based methods revealed genetic clusters corresponding to each sample site. Paleo-drainage reconstructions showed two putative paleo-rivers: an eastern one connecting KAE and SJO; and a western one merging in the Guanabara Bay (GAC, GMI, and SAL). A disagreement was uncovered between the inferred past riverine connections and current population genetic structure. Although KAE and SJO belong to the same paleo-river, the latter is more closely related to specimens from the Guanabara paleo-river. This discordance between paleo-drainage connections and phylogenetic structure may indicate an ancient stream-capture event in headwaters of this region. Furthermore, all analyses showed high divergence between KAE and the other lineages, suggesting at least one cryptic species in the latter, and that the nominal species should be restricted to the Macaé river basin, its type locality. In this drainage, impacts such as the invasive species and habitat loss can be especially threatening for such species with a narrow range. Our results also suggest that freshwater fishes from headwaters in the Serra do Mar mountains might have different biogeographical patterns than those from the lowlands, indicating a complex and dynamic climatic and geomorphological history.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 16%
Student > Master 10 16%
Student > Bachelor 8 13%
Researcher 8 13%
Professor 6 9%
Other 10 16%
Unknown 12 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 53%
Environmental Science 6 9%
Earth and Planetary Sciences 4 6%
Biochemistry, Genetics and Molecular Biology 2 3%
Chemistry 2 3%
Other 3 5%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2017.
All research outputs
#5,478,314
of 23,009,818 outputs
Outputs from Frontiers in Genetics
#1,505
of 12,067 outputs
Outputs of similar age
#105,427
of 439,575 outputs
Outputs of similar age from Frontiers in Genetics
#16
of 82 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,067 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,575 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.