↓ Skip to main content

Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2

Overview of attention for article published in Frontiers in Genetics, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2
Published in
Frontiers in Genetics, February 2018
DOI 10.3389/fgene.2018.00025
Pubmed ID
Authors

Øivind Skare, Rolv T. Lie, Øystein A. Haaland, Miriam Gjerdevik, Julia Romanowska, Håkon K. Gjessing, Astanand Jugessur

Abstract

Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant.Materials and Methods:We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring.Results:Associations were identified in "Dystrophin" (DMD, Xp21.2-p21.1), "Fibroblast growth factor 13" (FGF13, Xq26.3-q27.1) and "EGF-like domain multiple 6" (EGFL6, Xp22.2), with biologically plausible links to OFCs. UnlikeEGFL6, the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" (OFD1) and "Midline 1" (MID1)]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except forDMDin which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only.Discussion/Conclusion:The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations withDMD, EGF16, andFGF13. Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 11%
Student > Master 4 11%
Professor > Associate Professor 3 9%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 6 17%
Unknown 14 40%
Readers by discipline Count As %
Medicine and Dentistry 8 23%
Biochemistry, Genetics and Molecular Biology 3 9%
Agricultural and Biological Sciences 2 6%
Mathematics 1 3%
Nursing and Health Professions 1 3%
Other 4 11%
Unknown 16 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2018.
All research outputs
#14,092,894
of 23,025,074 outputs
Outputs from Frontiers in Genetics
#3,583
of 12,073 outputs
Outputs of similar age
#181,329
of 330,913 outputs
Outputs of similar age from Frontiers in Genetics
#61
of 123 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,073 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,913 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.