↓ Skip to main content

Molecular Identification of Shark Meat From Local Markets in Southern Brazil Based on DNA Barcoding: Evidence for Mislabeling and Trade of Endangered Species

Overview of attention for article published in Frontiers in Genetics, April 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
3 news outlets
twitter
18 X users
facebook
2 Facebook pages

Readers on

mendeley
136 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Identification of Shark Meat From Local Markets in Southern Brazil Based on DNA Barcoding: Evidence for Mislabeling and Trade of Endangered Species
Published in
Frontiers in Genetics, April 2018
DOI 10.3389/fgene.2018.00138
Pubmed ID
Authors

Fernanda Almerón-Souza, Christian Sperb, Carolina L. Castilho, Pedro I. C. C. Figueiredo, Leonardo T. Gonçalves, Rodrigo Machado, Larissa R. Oliveira, Victor H. Valiati, Nelson J. R. Fagundes

Abstract

Elasmobranchs, the group of cartilaginous fishes that include sharks and rays, are especially vulnerable to overfishing due to low fecundity and late sexual maturation. A significant number of elasmobranch species are currently overexploited or threatened by fisheries activities. Additionally, several recent reports have indicated that there has been a reduction in regional elasmobranch population sizes. Brazil is an important player in elasmobranch fisheries and one of the largest importers of shark meat. However, carcasses entering the shark meat market have usually had their fins and head removed, which poses a challenge to reliable species identification based on the morphology of captured individuals. This is further complicated by the fact that the internal Brazilian market trades several different elasmobranch species under a common popular name: "cação." The use of such imprecise nomenclature, even among governmental agencies, is problematic for both controlling the negative effects of shark consumption and informing the consumer about the origins of the product. In this study, we used DNA barcoding (mtDNA, COI gene) to identify, at the species level, "cação" samples available in local markets from Southern Brazil. We collected 63 samples traded as "cação," which we found to correspond to 20 different species. These included two teleost species: Xiphias gladius (n = 1) and Genidens barbus (n = 6), and 18 species from seven elasmobranch orders (Carcharhiniformes, n = 42; Squaliformes, n = 3; Squatiniformes, n = 2; Rhinopristiformes, n = 4; Myliobatiformes, n = 3; Rajiformes, n = 1; and Torpediniformes, n = 1). The most common species in our sample were Prionace glauca (n = 15) and Sphyrna lewini (n = 14), while all other species were represented by four samples or less. Considering IUCN criteria, 47% of the elasmobranch species found are threatened at the global level, while 53% are threatened and 47% are critically endangered in Brazil. These results underline that labeling the meat of any shark species as "cação" is problematic for monitoring catch allocations from the fishing industry and discourages consumer engagement in conservationist practices through informed decision-making.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 136 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 136 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 15%
Student > Bachelor 21 15%
Student > Ph. D. Student 18 13%
Researcher 14 10%
Student > Doctoral Student 7 5%
Other 11 8%
Unknown 44 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 24%
Biochemistry, Genetics and Molecular Biology 17 13%
Environmental Science 14 10%
Earth and Planetary Sciences 6 4%
Engineering 3 2%
Other 12 9%
Unknown 52 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 40. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2022.
All research outputs
#1,031,226
of 25,501,527 outputs
Outputs from Frontiers in Genetics
#163
of 13,743 outputs
Outputs of similar age
#22,522
of 339,890 outputs
Outputs of similar age from Frontiers in Genetics
#4
of 126 outputs
Altmetric has tracked 25,501,527 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,743 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,890 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 126 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.