↓ Skip to main content

A Gene-Based Positive Selection Detection Approach to Identify Vaccine Candidates Using Toxoplasma gondii as a Test Case Protozoan Pathogen

Overview of attention for article published in Frontiers in Genetics, August 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Gene-Based Positive Selection Detection Approach to Identify Vaccine Candidates Using Toxoplasma gondii as a Test Case Protozoan Pathogen
Published in
Frontiers in Genetics, August 2018
DOI 10.3389/fgene.2018.00332
Pubmed ID
Authors

Stephen J. Goodswen, Paul J. Kennedy, John T. Ellis

Abstract

Over the last two decades, various in silico approaches have been developed and refined that attempt to identify protein and/or peptide vaccines candidates from informative signals encoded in protein sequences of a target pathogen. As to date, no signal has been identified that clearly indicates a protein will effectively contribute to a protective immune response in a host. The premise for this study is that proteins under positive selection from the immune system are more likely suitable vaccine candidates than proteins exposed to other selection pressures. Furthermore, our expectation is that protein sequence regions encoding major histocompatibility complexes (MHC) binding peptides will contain consecutive positive selection sites. Using freely available data and bioinformatic tools, we present a high-throughput approach through a pipeline that predicts positive selection sites, protein subcellular locations, and sequence locations of medium to high T-Cell MHC class I binding peptides. Positive selection sites are estimated from a sequence alignment by comparing rates of synonymous (dS) and non-synonymous (dN) substitutions among protein coding sequences of orthologous genes in a phylogeny. The main pipeline output is a list of protein vaccine candidates predicted to be naturally exposed to the immune system and containing sites under positive selection. Candidates are ranked with respect to the number of consecutive sites located on protein sequence regions encoding MHCI-binding peptides. Results are constrained by the reliability of prediction programs and quality of input data. Protein sequences from Toxoplasma gondii ME49 strain (TGME49) were used as a case study. Surface antigen (SAG), dense granules (GRA), microneme (MIC), and rhoptry (ROP) proteins are considered worthy T. gondii candidates. Given 8263 TGME49 protein sequences processed anonymously, the top 10 predicted candidates were all worthy candidates. In particular, the top ten included ROP5 and ROP18, which are T. gondii virulence determinants. The chance of randomly selecting a ROP protein was 0.2% given 8263 sequences. We conclude that the approach described is a valuable addition to other in silico approaches to identify vaccines candidates worthy of laboratory validation and could be adapted for other apicomplexan parasite species (with appropriate data).

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 18%
Researcher 7 16%
Student > Bachelor 5 11%
Student > Doctoral Student 5 11%
Student > Ph. D. Student 3 7%
Other 5 11%
Unknown 12 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 27%
Biochemistry, Genetics and Molecular Biology 7 16%
Immunology and Microbiology 5 11%
Medicine and Dentistry 2 4%
Environmental Science 1 2%
Other 5 11%
Unknown 13 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#17,987,988
of 23,100,534 outputs
Outputs from Frontiers in Genetics
#6,181
of 12,152 outputs
Outputs of similar age
#239,578
of 333,688 outputs
Outputs of similar age from Frontiers in Genetics
#143
of 188 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,152 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,688 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 188 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.