↓ Skip to main content

A Highly Focused Antigen Receptor Repertoire Characterizes γδ T Cells That are Poised to Make IL-17 Rapidly in Naive Animals

Overview of attention for article published in Frontiers in immunology, March 2015
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Highly Focused Antigen Receptor Repertoire Characterizes γδ T Cells That are Poised to Make IL-17 Rapidly in Naive Animals
Published in
Frontiers in immunology, March 2015
DOI 10.3389/fimmu.2015.00118
Pubmed ID
Authors

Yu-Ling Wei, Arnold Han, Jacob Glanville, Fengqin Fang, Luis Alejandro Zuniga, Jacob S. Lee, Daniel J. Cua, Yueh-hsiu Chien

Abstract

Interleukin (IL)-17 plays a key role in immunity. In acute infections, a rapid IL-17 response must be induced without prior antigen exposure, and γδ T cells are the major initial IL-17 producers. In fact, some γδ T cells make IL-17 within hours after an immune challenge. These cells appear to acquire the ability to respond to IL-1 and IL-23 and to make IL-17 naturally in naïve animals. They are known as the natural Tγδ17 (nTγδ17) cells. The rapidity of the nTγδ17 response, and the apparent lack of explicit T cell receptor (TCR) engagement for its induction have led to the view that this is a cytokine (IL-1, IL-23)-mediated response. However, pharmacological inhibition or genetic defects in TCR signaling drastically reduce the nTγδ17 response and/or their presence. To better understand antigen recognition in this rapid IL-17 response, we analyzed the antigen receptor repertoire of IL-1R(+)/IL-23R(+) γδ T cells, a proxy for nTγδ17 cells in naïve animals directly ex vivo, using a barcode-enabled high throughput single-cell TCR sequence analysis. We found that regardless of their anatomical origin, these cells have a highly focused TCR repertoire. In particular, the TCR sequences have limited V gene combinations, little or no junctional diversity and much reduced or no N region diversity. In contrast, IL-23R(-) cells at mucosal sites similar to most of the splenic γδ T cells and small intestine epithelial γδ lymphocytes expressed diverse TCRs. This remarkable commonality and restricted repertoire of IL-1R(+)/IL-23R(+) γδ T cells underscores the importance of antigen recognition in their establishment/function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Unknown 55 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 32%
Researcher 12 21%
Student > Master 6 11%
Student > Bachelor 5 9%
Other 4 7%
Other 6 11%
Unknown 6 11%
Readers by discipline Count As %
Immunology and Microbiology 16 28%
Agricultural and Biological Sciences 15 26%
Biochemistry, Genetics and Molecular Biology 7 12%
Medicine and Dentistry 6 11%
Engineering 3 5%
Other 2 4%
Unknown 8 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2015.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Frontiers in immunology
#22,570
of 31,513 outputs
Outputs of similar age
#193,547
of 278,101 outputs
Outputs of similar age from Frontiers in immunology
#103
of 148 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,513 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.