↓ Skip to main content

Redefining Myeloid Cell Subsets in Murine Spleen

Overview of attention for article published in Frontiers in immunology, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
269 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Redefining Myeloid Cell Subsets in Murine Spleen
Published in
Frontiers in immunology, January 2016
DOI 10.3389/fimmu.2015.00652
Pubmed ID
Authors

Ying-Ying Hey, Jonathan K. H. Tan, Helen C. O’Neill

Abstract

Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 269 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 268 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 68 25%
Researcher 44 16%
Student > Master 29 11%
Student > Bachelor 21 8%
Student > Doctoral Student 20 7%
Other 28 10%
Unknown 59 22%
Readers by discipline Count As %
Immunology and Microbiology 58 22%
Biochemistry, Genetics and Molecular Biology 45 17%
Agricultural and Biological Sciences 41 15%
Medicine and Dentistry 38 14%
Neuroscience 6 2%
Other 18 7%
Unknown 63 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2016.
All research outputs
#22,945,287
of 25,584,565 outputs
Outputs from Frontiers in immunology
#27,826
of 32,016 outputs
Outputs of similar age
#344,096
of 402,164 outputs
Outputs of similar age from Frontiers in immunology
#102
of 124 outputs
Altmetric has tracked 25,584,565 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 32,016 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,164 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 124 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.