↓ Skip to main content

Microenvironmental Control of High-Speed Interstitial T Cell Migration in the Lymph Node

Overview of attention for article published in Frontiers in immunology, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microenvironmental Control of High-Speed Interstitial T Cell Migration in the Lymph Node
Published in
Frontiers in immunology, May 2016
DOI 10.3389/fimmu.2016.00194
Pubmed ID
Authors

Tomoya Katakai, Tatsuo Kinashi

Abstract

T cells are highly concentrated in the lymph node (LN) paracortex, which serves an important role in triggering adoptive immune responses. Live imaging using two-photon laser scanning microscopy revealed vigorous and non-directional T cell migration within this area at average velocity of more than 10 μm/min. Active interstitial T cell movement is considered to be crucial for scanning large numbers of dendritic cells (DCs) to find rare cognate antigens. However, the mechanism by which T cells achieve such high-speed movement in a densely packed, dynamic tissue environment is not fully understood. Several new findings suggest that fibroblastic reticular cells (FRCs) and DCs control T cell movement in a multilateral manner. Chemokines and lysophosphatidic acid produced by FRCs cooperatively promote the migration, while DCs facilitate LFA-1-dependent motility via expression of ICAM-1. Furthermore, the highly dense and confined microenvironment likely plays a key role in anchorage-independent motility. We propose that T cells dynamically switch between two motility modes; anchorage-dependent and -independent manners. Unique tissue microenvironment and characteristic migration modality of T cells cooperatively generate high-speed interstitial movement in the LN.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 40%
Researcher 12 25%
Student > Master 5 10%
Other 3 6%
Professor > Associate Professor 2 4%
Other 5 10%
Unknown 2 4%
Readers by discipline Count As %
Immunology and Microbiology 15 31%
Biochemistry, Genetics and Molecular Biology 7 15%
Agricultural and Biological Sciences 6 13%
Medicine and Dentistry 4 8%
Engineering 4 8%
Other 7 15%
Unknown 5 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#15,738,224
of 25,371,288 outputs
Outputs from Frontiers in immunology
#15,366
of 31,507 outputs
Outputs of similar age
#177,316
of 327,285 outputs
Outputs of similar age from Frontiers in immunology
#77
of 146 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,507 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,285 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.