↓ Skip to main content

Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation

Overview of attention for article published in Frontiers in immunology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation
Published in
Frontiers in immunology, August 2016
DOI 10.3389/fimmu.2016.00294
Pubmed ID
Authors

Matthias J. Reddehase

Abstract

Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a "window of opportunity" for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A "window of opportunity" for the virus represents a "window of risk" for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8(+) T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing "proof of concept" for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8(+) T cells bridging the critical interim. However, CMV is not a "passive antigen" but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to "graft failure." In consequence, uncontrolled virus spread causes morbidity and mortality. In the race between viral BM pathology and reconstitution of antiviral immunity following HCT, exogenous reconstitution of virus-specific CD8(+) T cells by adoptive cell transfer as an interventional strategy can turn the balance toward control of CMV.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 24%
Other 3 10%
Researcher 3 10%
Student > Ph. D. Student 3 10%
Student > Postgraduate 2 7%
Other 6 21%
Unknown 5 17%
Readers by discipline Count As %
Medicine and Dentistry 9 31%
Agricultural and Biological Sciences 4 14%
Biochemistry, Genetics and Molecular Biology 3 10%
Immunology and Microbiology 3 10%
Engineering 2 7%
Other 2 7%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2016.
All research outputs
#16,643,581
of 25,461,852 outputs
Outputs from Frontiers in immunology
#18,224
of 31,698 outputs
Outputs of similar age
#240,872
of 382,071 outputs
Outputs of similar age from Frontiers in immunology
#75
of 119 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,698 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 382,071 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.