↓ Skip to main content

Differential Regulation of Self-reactive CD4+ T Cells in Cervical Lymph Nodes and Central Nervous System during Viral Encephalomyelitis

Overview of attention for article published in Frontiers in immunology, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Regulation of Self-reactive CD4+ T Cells in Cervical Lymph Nodes and Central Nervous System during Viral Encephalomyelitis
Published in
Frontiers in immunology, September 2016
DOI 10.3389/fimmu.2016.00370
Pubmed ID
Authors

Carine Savarin, Cornelia C. Bergmann, David R. Hinton, Stephen A. Stohlman

Abstract

Viral infections have long been implicated as triggers of autoimmune diseases, including multiple sclerosis (MS), a central nervous system (CNS) inflammatory demyelinating disorder. Epitope spreading, molecular mimicry, cryptic antigen, and bystander activation have been implicated as mechanisms responsible for activating self-reactive (SR) immune cells, ultimately leading to organ-specific autoimmune disease. Taking advantage of coronavirus JHM strain of mouse hepatitis virus (JHMV)-induced demyelination, this study demonstrates that the host also mounts counteractive measures to specifically limit expansion of endogenous SR T cells. In this model, immune-mediated demyelination is associated with induction of SR T cells after viral control. However, their decline during persisting infection, despite ongoing demyelination, suggests an active control mechanism. Antigen-specific IL-10-secreting CD4(+) T cells (Tr1) and Foxp3(+) regulatory T cells (Tregs), both known to control autoimmunity and induced following JHMV infection, were assessed for their relative in vivo suppressive function of SR T cells. Ablation of Foxp3(+) Tregs in chronically infected DEREG mice significantly increased SR CD4(+) T cells within cervical lymph nodes (CLN), albeit without affecting their numbers or activation within the CNS compared to controls. In contrast, infected IL-27 receptor deficient (IL-27R(-/-)) mice, characterized by a drastic reduction of Tr1 cells, revealed that SR CD4(+) T cells in CLN remained unchanged but were specifically increased within the CNS. These results suggest that distinct Treg subsets limit SR T cells in the draining lymph nodes and CNS to maximize suppression of SR T-cell-mediated autoimmune pathology. The JHMV model is thus valuable to decipher tissue-specific mechanisms preventing autoimmunity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 24%
Other 4 14%
Student > Ph. D. Student 4 14%
Researcher 4 14%
Student > Master 4 14%
Other 3 10%
Unknown 3 10%
Readers by discipline Count As %
Medicine and Dentistry 8 28%
Biochemistry, Genetics and Molecular Biology 3 10%
Nursing and Health Professions 2 7%
Agricultural and Biological Sciences 2 7%
Psychology 2 7%
Other 9 31%
Unknown 3 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2016.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Frontiers in immunology
#27,417
of 31,516 outputs
Outputs of similar age
#288,892
of 328,376 outputs
Outputs of similar age from Frontiers in immunology
#136
of 165 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,516 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,376 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.