↓ Skip to main content

Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells

Overview of attention for article published in Frontiers in immunology, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
115 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells
Published in
Frontiers in immunology, December 2016
DOI 10.3389/fimmu.2016.00610
Pubmed ID
Authors

Anja Derer, Martina Spiljar, Monika Bäumler, Markus Hecht, Rainer Fietkau, Benjamin Frey, Udo S. Gaipl

Abstract

Immunotherapy approaches currently make their way into the clinics to improve the outcome of standard radiochemotherapy (RCT). The programed cell death receptor ligand 1 (PD-L1) is one possible target that, upon blockade, allows T cell-dependent antitumor immune responses to be executed. To date, it is unclear which RCT protocol and which fractionation scheme leads to increased PD-L1 expression and thereby renders blockade of this immune suppressive pathway reasonable. We therefore investigated the impact of radiotherapy (RT), chemotherapy (CT), and RCT on PD-L1 surface expression on tumor cells of tumor entities with differing somatic mutation prevalence. Murine melanoma (B16-F10), glioblastoma (GL261-luc2), and colorectal (CT26) tumor cells were treated with dacarbazine, temozolomide, and a combination of irinotecan, oxaliplatin, and fluorouracil, respectively. Additionally, they were irradiated with a single dose [10 Gray (Gy)] or hypo-fractionated (2 × 5 Gy), respectively, norm-fractionated (5 × 2 Gy) radiation protocols were used. PD-L1 surface and intracellular interferon (IFN)-gamma expression was measured by flow cytometry, and IL-6 release was determined by ELISA. Furthermore, tumor cell death was monitored by AnnexinV-FITC/7-AAD staining. For first in vivo analyses, the B16-F10 mouse melanoma model was chosen. In B16-F10 and GL261-luc2 cells, particularly norm-fractionated and hypo-fractionated radiation led to a significant increase of surface PD-L1, which could not be observed in CT26 cells. Furthermore, PD-L1 expression is more pronounced on vital tumor cells and goes along with increased levels of IFN-gamma in the tumor cells. In melanoma cells CT was the main trigger for IL-6 release, while in glioblastoma cells it was norm-fractionated RT. In vivo, fractionated RT only in combination with dacarbazine induced PD-L1 expression on melanoma cells. Our results suggest a tumor cell-mediated upregulation of PD-L1 expression following in particular chemoradiation that is not only dependent on the somatic mutation prevalence of the tumor entity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 90 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 18%
Researcher 15 17%
Student > Master 13 14%
Student > Doctoral Student 7 8%
Other 7 8%
Other 12 13%
Unknown 20 22%
Readers by discipline Count As %
Medicine and Dentistry 26 29%
Biochemistry, Genetics and Molecular Biology 16 18%
Immunology and Microbiology 11 12%
Agricultural and Biological Sciences 5 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 5 6%
Unknown 26 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2016.
All research outputs
#14,601,057
of 25,703,943 outputs
Outputs from Frontiers in immunology
#11,882
of 32,216 outputs
Outputs of similar age
#213,779
of 424,679 outputs
Outputs of similar age from Frontiers in immunology
#130
of 286 outputs
Altmetric has tracked 25,703,943 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 32,216 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,679 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 286 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.