↓ Skip to main content

TNF Blockade Maintains an IL-10+ Phenotype in Human Effector CD4+ and CD8+ T Cells

Overview of attention for article published in Frontiers in immunology, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
10 X users

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TNF Blockade Maintains an IL-10+ Phenotype in Human Effector CD4+ and CD8+ T Cells
Published in
Frontiers in immunology, February 2017
DOI 10.3389/fimmu.2017.00157
Pubmed ID
Authors

Ceri A. Roberts, Lucy E. Durham, Veerle Fleskens, Hayley G. Evans, Leonie S. Taams

Abstract

CD4(+) and CD8(+) effector T cell subpopulations can display regulatory potential characterized by expression of the prototypically anti-inflammatory cytokine IL-10. However, the underlying cellular mechanisms that regulate expression of IL-10 in different T cell subpopulations are not yet fully elucidated. We recently showed that TNF inhibitors (TNFi) promote IL-10 expression in human CD4(+) T cells, including IL-17(+) CD4(+) T cells. Here, we further characterized the regulation of IL-10 expression via blockade of TNF signaling or other cytokine/co-stimulatory pathways, in human T cell subpopulations. Addition of the TNFi drug adalimumab to anti-CD3-stimulated human CD4(+) T cell/monocyte cocultures led to increased percentages of IL-10(+) cells in pro-inflammatory IL-17(+), IFNγ(+), TNFα(+), GM-CSF(+), and IL-4(+) CD4(+) T cell subpopulations. Conversely, exogenous TNFα strongly decreased IL-10(+) cell frequencies. TNF blockade also regulated IL-10 expression in CD4(+) T cells upon antigenic stimulation. Using time course experiments in whole peripheral blood mononuclear cell (PBMC) cultures, we show that TNF blockade maintained, rather than increased, IL-10(+) cell frequencies in both CD4(+) and CD8(+) T cells following in vitro stimulation in a dose- and time-dependent manner. Blockade of IL-17, IFNγ, IL-6R, or CD80/CD86-mediated co-stimulation did not significantly regulate IL-10 expression within CD4(+) or CD8(+) T cell subpopulations. We show that TNF blockade acts directly on effector CD4(+) T cells, in the absence of monocytes or CD4(+) CD25(high)CD127(low) regulatory T cells and independently of IL-27, resulting in higher IL-10(+) frequencies after 3 days in culture. IL-10/IL-10R blockade reduced the frequency of IL-10-expressing cells both in the presence and absence of TNF blockade. Addition of recombinant IL-10 alone was insufficient to drive an increase in IL-10(+) CD4(+) T cell frequencies in 3-day CD4(+) T cell/monocyte cocultures, but resulted in increased IL-10 expression at later time points in whole PBMC cultures. Together, these data provide additional insights into the regulation of IL-10 expression in human T cells by TNF blockade. The maintenance of an IL-10(+) phenotype across a broad range of effector T cell subsets may represent an underappreciated mechanism of action underlying this widely used therapeutic strategy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Student > Master 7 14%
Researcher 4 8%
Student > Doctoral Student 3 6%
Student > Bachelor 3 6%
Other 13 25%
Unknown 12 24%
Readers by discipline Count As %
Medicine and Dentistry 11 22%
Immunology and Microbiology 7 14%
Biochemistry, Genetics and Molecular Biology 5 10%
Agricultural and Biological Sciences 3 6%
Energy 2 4%
Other 11 22%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 March 2017.
All research outputs
#6,214,801
of 25,382,440 outputs
Outputs from Frontiers in immunology
#6,291
of 31,531 outputs
Outputs of similar age
#114,177
of 448,866 outputs
Outputs of similar age from Frontiers in immunology
#97
of 403 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,866 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 403 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.