↓ Skip to main content

Evolution of Interferons and Interferon Receptors

Overview of attention for article published in Frontiers in immunology, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
13 X users

Readers on

mendeley
176 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolution of Interferons and Interferon Receptors
Published in
Frontiers in immunology, March 2017
DOI 10.3389/fimmu.2017.00209
Pubmed ID
Authors

Chris J. Secombes, Jun Zou

Abstract

The earliest jawed vertebrates (Gnathostomes) would likely have had interferon (IFN) genes, since they are present in extant cartilaginous fish (sharks and rays) and bony fish (lobe-finned and ray-finned fish, the latter consisting of the chondrostei, holostei, and teleostei), as well as in tetrapods. They are thought to have evolved from a class II helical cytokine ancestor, along with the interleukin (IL)-10 cytokine family. The two rounds of whole genome duplication (WGD) that occurred between invertebrates and vertebrates (1) may have given rise to additional loci, initially containing an IL-10 ancestor and IFN ancestor, which have duplicated further to give rise to the two loci containing the IL-10 family genes, and potentially the IFN type I and IFN type III loci (2). The timing of the divergence of the IFN type II gene from the IL-10 family genes is not clear but was also an early event in vertebrate evolution. Further WGD events at the base of the teleost fish, and in particular teleost lineages (cyprinids, salmonids), have duplicated the loci further, giving rise to additional IFN genes, with tandem gene duplication within a locus a common occurrence. Finally, retrotransposition events have occurred in different vertebrate lineages giving rise to further IFN loci, with large expansions of genes at these loci in some cases. This review will initially explore the likely IFN system present in the earliest Gnathostomes by comparison of the known cartilaginous fish genes with those present in mammals and will then explore the changes that have occurred in gene number/diversification, gene organization, and the encoded proteins during vertebrate evolution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 176 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 176 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 43 24%
Student > Master 21 12%
Researcher 18 10%
Student > Doctoral Student 16 9%
Student > Bachelor 15 9%
Other 23 13%
Unknown 40 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 41 23%
Agricultural and Biological Sciences 40 23%
Immunology and Microbiology 27 15%
Medicine and Dentistry 7 4%
Veterinary Science and Veterinary Medicine 5 3%
Other 13 7%
Unknown 43 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 March 2017.
All research outputs
#5,189,598
of 25,382,440 outputs
Outputs from Frontiers in immunology
#5,639
of 31,531 outputs
Outputs of similar age
#86,615
of 323,974 outputs
Outputs of similar age from Frontiers in immunology
#92
of 432 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,974 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 432 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.