↓ Skip to main content

Barriers to Radiation-Induced In Situ Tumor Vaccination

Overview of attention for article published in Frontiers in immunology, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
142 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Barriers to Radiation-Induced In Situ Tumor Vaccination
Published in
Frontiers in immunology, March 2017
DOI 10.3389/fimmu.2017.00229
Pubmed ID
Authors

Erik Wennerberg, Claire Lhuillier, Claire Vanpouille-Box, Karsten A. Pilones, Elena García-Martínez, Nils-Petter Rudqvist, Silvia C. Formenti, Sandra Demaria

Abstract

The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 142 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 142 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 19%
Researcher 21 15%
Student > Master 15 11%
Student > Doctoral Student 10 7%
Student > Bachelor 9 6%
Other 28 20%
Unknown 32 23%
Readers by discipline Count As %
Medicine and Dentistry 43 30%
Biochemistry, Genetics and Molecular Biology 15 11%
Immunology and Microbiology 15 11%
Pharmacology, Toxicology and Pharmaceutical Science 6 4%
Agricultural and Biological Sciences 5 4%
Other 13 9%
Unknown 45 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 April 2017.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from Frontiers in immunology
#14,217
of 31,531 outputs
Outputs of similar age
#171,615
of 322,532 outputs
Outputs of similar age from Frontiers in immunology
#273
of 446 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,532 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 446 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.