↓ Skip to main content

Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression

Overview of attention for article published in Frontiers in immunology, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression
Published in
Frontiers in immunology, March 2017
DOI 10.3389/fimmu.2017.00303
Pubmed ID
Authors

Elizabeth Mendoza-Coronel, Enrique Ortega

Abstract

In response to microenvironmental cues, macrophages undergo a profound phenotypic transformation acquiring distinct activation phenotypes ranging from pro-inflammatory (M1) to anti-inflammatory (M2). To study how activation phenotype influences phagocytosis and production of reactive oxygen species (ROS) mediated by receptors for IgG antibodies (Fcγ receptors) and by CD13, human monocyte-derived macrophages were polarized to distinct phenotypes using IFN-γ (Mϕ-IFN-γ), IL-4 (Mϕ-IL-4), or IL-10 (Mϕ-IL-10). Phenotypically, Mϕ-IFN-γ were characterized as CD14(+)CD80(+)CD86(+) cells, Mϕ-IL-4 as CD209(high)CD206(+)CD11b(+)CD14(low), and Mϕ-IL-10 as CD16(+)CD163(+) cells. Compared to non-polarized macrophages, FcγRI expression increased in Mϕ-IFN-γ and Mϕ-IL-10 and FcγRIII expression increased in Mϕ-IL-10. None of the polarizing cytokines modified FcγRII or CD13 expression. Functionally, we found that cytokine-mediated activation significantly and distinctively affected FcγR- and CD13-mediated phagocytosis and ROS generation. Compared to non-polarized macrophages, FcγRI-, FcγRII-, and CD13-mediated phagocytosis was significantly increased in Mϕ-IL-10 and decreased in Mϕ-IFN-γ, although both cytokines significantly upregulated FcγRI expression. IL-10 also increased phagocytosis of Escherichia coli, showing that the effect of IL-10 on macrophage phagocytosis is not specific for a particular receptor. Interestingly, Mϕ-IL-4, which showed poor FcγR- and CD13-mediated phagocytosis, showed very high phagocytosis of E. coli and zymosan. Coupled with phagocytosis, macrophages produce ROS that contribute to microbial killing. As expected, Mϕ-IFN-γ showed significant production of ROS after FcγRI-, FcγRII-, or CD13-mediated phagocytosis. Unexpectedly, we found that Mϕ-IL-10 can also produce ROS after simultaneous stimulation through several phagocytic receptors, as coaggregation of FcγRI/FcγRII/CD13 induced a belated but significant ROS production. Together, these results demonstrate that activation of macrophages by each cytokine distinctly modulates expression of phagocytic receptors, FcγR- and CD13-mediated phagocytosis, and ROS production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 <1%
Unknown 122 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 17%
Student > Bachelor 20 16%
Student > Master 16 13%
Researcher 15 12%
Student > Doctoral Student 8 7%
Other 18 15%
Unknown 25 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 24 20%
Immunology and Microbiology 20 16%
Agricultural and Biological Sciences 17 14%
Medicine and Dentistry 14 11%
Pharmacology, Toxicology and Pharmaceutical Science 5 4%
Other 15 12%
Unknown 28 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2017.
All research outputs
#14,605,790
of 25,382,440 outputs
Outputs from Frontiers in immunology
#12,364
of 31,531 outputs
Outputs of similar age
#160,518
of 323,059 outputs
Outputs of similar age from Frontiers in immunology
#239
of 432 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,059 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 432 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.