↓ Skip to main content

Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut

Overview of attention for article published in Frontiers in immunology, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut
Published in
Frontiers in immunology, April 2017
DOI 10.3389/fimmu.2017.00459
Pubmed ID
Authors

Kalliopi Pervolaraki, Megan L. Stanifer, Stephanie Münchau, Lynnsey A. Renn, Dorothee Albrecht, Stefan Kurzhals, Elena Senís, Dirk Grimm, Jutta Schröder-Braunstein, Ronald L. Rabin, Steeve Boulant

Abstract

Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 31%
Researcher 14 15%
Student > Bachelor 14 15%
Student > Master 5 5%
Student > Doctoral Student 3 3%
Other 8 9%
Unknown 19 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 25%
Immunology and Microbiology 23 25%
Biochemistry, Genetics and Molecular Biology 16 18%
Medicine and Dentistry 3 3%
Veterinary Science and Veterinary Medicine 2 2%
Other 3 3%
Unknown 21 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 May 2017.
All research outputs
#14,918,049
of 25,382,440 outputs
Outputs from Frontiers in immunology
#13,191
of 31,531 outputs
Outputs of similar age
#164,301
of 323,266 outputs
Outputs of similar age from Frontiers in immunology
#245
of 415 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,266 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 415 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.