↓ Skip to main content

Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology

Overview of attention for article published in Frontiers in immunology, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
102 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology
Published in
Frontiers in immunology, April 2017
DOI 10.3389/fimmu.2017.00463
Pubmed ID
Authors

André Alex Grassmann, Frederico Schmitt Kremer, Júlia Cougo dos Santos, Jéssica Dias Souza, Luciano da Silva Pinto, Alan John Alexander McBride

Abstract

Leptospira spp. are diderm (two membranes) bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin) vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb) transmembrane proteins and outer membrane (OM) lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II) epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins identified included, e.g., TolC efflux pump proteins, a BamA-like OM component of the βb transmembrane protein assembly machinery, and the LptD-like LPS assembly protein. The structural mapping of the immunodominant epitopes identified the location of conserved, surface-exposed, immunogenic regions for each vaccine candidate. The proteins identified in this study are currently being evaluated for experimental evidence for their involvement in virulence, disease pathogenesis, and physiology, in addition to vaccine development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 102 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 16%
Student > Bachelor 16 16%
Student > Master 12 12%
Student > Doctoral Student 9 9%
Student > Ph. D. Student 9 9%
Other 13 13%
Unknown 27 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 18%
Agricultural and Biological Sciences 14 14%
Veterinary Science and Veterinary Medicine 13 13%
Medicine and Dentistry 8 8%
Immunology and Microbiology 7 7%
Other 9 9%
Unknown 33 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from Frontiers in immunology
#24,755
of 31,531 outputs
Outputs of similar age
#248,260
of 323,433 outputs
Outputs of similar age from Frontiers in immunology
#374
of 411 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,433 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 411 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.