↓ Skip to main content

Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

Overview of attention for article published in Frontiers in immunology, April 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function
Published in
Frontiers in immunology, April 2017
DOI 10.3389/fimmu.2017.00485
Pubmed ID
Authors

Yan Fu, John A. Browne, Kate Killick, Grace Mulcahy

Abstract

The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG) from ovine peripheral blood mononuclear cells (PBMCs) at acute and chronic stages of F. hepatica infection, and yielded important information on host-parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first) were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only favors parasite survival into chronic infection but also impedes the host's immune response to other pathogens, and render vaccination against fasciolosis a difficult challenge. The information provided will be useful in the design of specific vaccine protocols to overcome parasite-mediated immunoregulation and in furthering general understanding of the interplay between helminth infection and host immune systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 31%
Student > Bachelor 4 14%
Professor > Associate Professor 4 14%
Student > Master 3 10%
Researcher 2 7%
Other 4 14%
Unknown 3 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 28%
Veterinary Science and Veterinary Medicine 6 21%
Biochemistry, Genetics and Molecular Biology 3 10%
Nursing and Health Professions 2 7%
Medicine and Dentistry 2 7%
Other 3 10%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2017.
All research outputs
#7,265,756
of 25,382,440 outputs
Outputs from Frontiers in immunology
#8,326
of 31,531 outputs
Outputs of similar age
#107,799
of 323,623 outputs
Outputs of similar age from Frontiers in immunology
#159
of 411 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,623 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 411 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.