↓ Skip to main content

MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation

Overview of attention for article published in Frontiers in immunology, July 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
4 X users
patent
2 patents

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation
Published in
Frontiers in immunology, July 2017
DOI 10.3389/fimmu.2017.00758
Pubmed ID
Authors

Samira Ghorbani, Farideh Talebi, Fuk Chan, Farimah Masoumi, Mohammed Vojgani, Christopher Power, Farshid Noorbakhsh

Abstract

Recent studies have revealed that multiple sclerosis (MS) lesions have distinct microRNA (miRNA) expression profiles. miR-181 family members show altered expression in MS tissues although their participation in MS pathogenesis remains uncertain. Herein, we investigated the involvement of miR-181a and miR-181b in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). miR-181a and -b levels were measured in the central nervous system (CNS) of patients with MS and mice with EAE as well as relevant leukocyte cultures by real-time RT-PCR. To examine the role of the miRNAs in leukocyte differentiation and function, miR-181a and -b mimic sequences were transfected into cultured primary macrophages and purified CD4(+) T cells which were then analyzed by RT-PCR and flow cytometry. Luciferase reporter assays were performed to investigate the interaction of miR-181a and -b with the 3'-UTR of potential target transcripts, and the expression of target genes was measured in the CNS of EAE mice, activated lymphocytes, and macrophages. Expression analyses revealed a significant decrease in miR-181a and -b levels in brain white matter from MS patients as well as in spinal cords of EAE mice during the acute and chronic phases of disease. Suppression of miR-181a was observed following antigen-specific or polyclonal activation of lymphocytes as well as in macrophages following LPS treatment. Overexpression of miR-181a and -b mimic sequences reduced proinflammatory gene expression in macrophages and polarization toward M1 phenotype. miR-181a and -b mimic sequences inhibited Th1 generation in CD4(+) T cells and miR-181a mimic sequences also promoted Treg differentiation. Luciferase assays revealed Suppressor of mothers against decapentaplegic 7 (Smad7), as a direct target of miR-181a and -b. Our data highlight the anti-inflammatory actions of miR-181a and -b in the context of autoimmune neuroinflammation. miR-181a and -b influence differentiation of T helper cell and activation of macrophages, providing potential therapeutic options for controlling inflammation in MS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Student > Master 7 14%
Student > Bachelor 7 14%
Researcher 5 10%
Professor > Associate Professor 3 6%
Other 4 8%
Unknown 15 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 18%
Agricultural and Biological Sciences 6 12%
Immunology and Microbiology 5 10%
Neuroscience 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 7 14%
Unknown 17 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2022.
All research outputs
#6,498,682
of 25,382,440 outputs
Outputs from Frontiers in immunology
#6,844
of 31,531 outputs
Outputs of similar age
#94,647
of 325,062 outputs
Outputs of similar age from Frontiers in immunology
#103
of 413 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,062 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 413 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.