↓ Skip to main content

Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview

Overview of attention for article published in Frontiers in immunology, July 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
3 X users
patent
2 patents

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
186 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview
Published in
Frontiers in immunology, July 2017
DOI 10.3389/fimmu.2017.00865
Pubmed ID
Authors

Ellen R. Goldman, Jinny L. Liu, Dan Zabetakis, George P. Anderson

Abstract

Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 186 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 186 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 42 23%
Student > Ph. D. Student 32 17%
Student > Bachelor 24 13%
Student > Master 14 8%
Student > Doctoral Student 13 7%
Other 17 9%
Unknown 44 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 65 35%
Agricultural and Biological Sciences 30 16%
Immunology and Microbiology 9 5%
Engineering 9 5%
Chemistry 7 4%
Other 21 11%
Unknown 45 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2023.
All research outputs
#7,208,166
of 25,382,440 outputs
Outputs from Frontiers in immunology
#8,110
of 31,531 outputs
Outputs of similar age
#106,231
of 327,041 outputs
Outputs of similar age from Frontiers in immunology
#125
of 423 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 31,531 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,041 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 423 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.