↓ Skip to main content

Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus

Overview of attention for article published in Frontiers in immunology, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus
Published in
Frontiers in immunology, August 2017
DOI 10.3389/fimmu.2017.00996
Pubmed ID
Authors

Luisa C. Carneiro, Carmen Bedford, Sarah Jacca, Alfonso Rosamilia, Vera F. de Lima, Gaetano Donofrio, I. Martin Sheldon, James G. Cronin

Abstract

Bovine herpesvirus-4 (BoHV-4) and bovine viral diarrhea virus (BVDV) infect the uterus of cattle, often resulting in reduced fertility, or abortion of the fetus, respectively. Here, exposure of primary bovine endometrial cells to BoHV-4 or BVDV modulated the production of inflammatory mediators. Viral pathogen-associated molecular patterns (PAMPs) are detected via pattern-recognition receptors (PRRs). However, the relative contribution of specific PRRs to innate immunity, during viral infection of the uterus, is unclear. Endometrial epithelial and stromal cells constitutively express the PRR Toll-like receptor (TLR)-3, but, the status of retinoic acid-inducible gene I (RIG-I), a sensor of cytosolic nucleic acids, is unknown. Primary endometrial epithelial and stromal cells had low expression of RIG-I, which was increased in stromal cells after 12 h transfection with the TLR3 ligand Poly(I:C), a synthetic analog of double-stranded RNA. Furthermore, short interfering RNA targeting TLR3, or interferon (IFN) regulatory transcription factor 3, an inducer of type I IFN transcription, reduced Poly(I:C)-induced RIG-I protein expression and reduced inflammatory mediator secretion from stromal cells. We conclude that antiviral defense of endometrial stromal cells requires coordinated recognition of PAMPs, initially via TLR3 and later via inducible RIG-I.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 22%
Student > Ph. D. Student 5 19%
Student > Bachelor 4 15%
Researcher 3 11%
Professor > Associate Professor 2 7%
Other 1 4%
Unknown 6 22%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 6 22%
Agricultural and Biological Sciences 5 19%
Biochemistry, Genetics and Molecular Biology 3 11%
Medicine and Dentistry 3 11%
Immunology and Microbiology 2 7%
Other 2 7%
Unknown 6 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in immunology
#27,431
of 31,537 outputs
Outputs of similar age
#285,347
of 325,032 outputs
Outputs of similar age from Frontiers in immunology
#394
of 445 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,032 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 445 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.