↓ Skip to main content

Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route

Overview of attention for article published in Frontiers in immunology, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Btp Proteins from Brucella abortus Modulate the Lung Innate Immune Response to Infection by the Respiratory Route
Published in
Frontiers in immunology, August 2017
DOI 10.3389/fimmu.2017.01011
Pubmed ID
Authors

Maria Soledad Hielpos, Mariana C. Ferrero, Andrea G. Fernández, Juliana Falivene, Silvia Vanzulli, Diego J. Comerci, Pablo C. Baldi

Abstract

Although inhalation of infected aerosols is a frequent route for Brucella infection in humans, it rarely causes pulmonary clinical manifestations, suggesting a mild or nearly absent local inflammatory response. The goal of this study was to characterize the early innate immune response to intratracheal infection with Brucella abortus in mice and to evaluate whether it is modulated by this pathogen. After infection with 10(6) CFU of B. abortus, the pulmonary bacterial burden at 7 days post-infection (p.i.) was comparable to the initial inoculum, despite an initial transient decline. Brucella was detected in spleen and liver as early as 1 day p.i. IL-1β and MCP-1 increased at 3 days p.i., whereas IL-12, KC, TNF-α, and IFN-γ only increased at 7 days p.i. Histological examination did not reveal peribronchial or perivascular infiltrates in infected mice. Experiments were conducted to evaluate if the limited inflammatory lung response to B. abortusis caused by a bacterial mechanism of TLR signaling inhibition. Whereas inoculation of E. coli LPS to control mice [phosphate-buffered saline (PBS)/LPS] caused lung inflammation, almost no histological changes were observed in mice preinfected intratracheally with B. abortus (WT/LPS). We speculated that the Brucella TIR-containing proteins (Btps) A and B, which impair TLR signaling in vitro, may be involved in this modulation. After LPS challenge, mice preinfected with the B. abortus btpAbtpB double mutant exhibited a stronger pulmonary polymorphonuclear infiltrate than WT/LPS mice, although milder than that of the PBS/LPS group. In addition, lungs from B. abortus btpAbtpB-infected mice presented a stronger inflammatory infiltrate than those infected with the WT strain, and at day 7 p.i., the pulmonary levels of KC, MCP-1, and IL-12 were higher in mice infected with the mutant. This study shows that B. abortus infection produces a mild proinflammatory response in murine lungs, partially due to immune modulation by its Btp proteins. This may facilitate its survival and dissemination to peripheral organs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 29%
Student > Ph. D. Student 7 23%
Professor 4 13%
Student > Doctoral Student 1 3%
Student > Master 1 3%
Other 3 10%
Unknown 6 19%
Readers by discipline Count As %
Immunology and Microbiology 8 26%
Agricultural and Biological Sciences 7 23%
Veterinary Science and Veterinary Medicine 4 13%
Biochemistry, Genetics and Molecular Biology 2 6%
Nursing and Health Professions 1 3%
Other 0 0%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Frontiers in immunology
#27,431
of 31,537 outputs
Outputs of similar age
#285,225
of 324,941 outputs
Outputs of similar age from Frontiers in immunology
#394
of 445 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 445 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.