↓ Skip to main content

Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?

Overview of attention for article published in Frontiers in immunology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?
Published in
Frontiers in immunology, October 2017
DOI 10.3389/fimmu.2017.01246
Pubmed ID
Authors

Rebecca P. Sumner, Lucy G. Thorne, Doug L. Fink, Hataf Khan, Richard S. Milne, Greg J. Towers

Abstract

HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus-host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host-virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host-virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the HIV capsid and the viral accessory proteins highlighting important unanswered questions and discussing future perspectives.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 76 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 18%
Student > Ph. D. Student 14 18%
Student > Bachelor 13 17%
Researcher 8 11%
Student > Doctoral Student 3 4%
Other 10 13%
Unknown 14 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 28%
Immunology and Microbiology 21 28%
Medicine and Dentistry 8 11%
Agricultural and Biological Sciences 8 11%
Arts and Humanities 1 1%
Other 2 3%
Unknown 15 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 November 2017.
All research outputs
#16,008,718
of 25,411,814 outputs
Outputs from Frontiers in immunology
#16,496
of 31,614 outputs
Outputs of similar age
#187,361
of 332,213 outputs
Outputs of similar age from Frontiers in immunology
#319
of 540 outputs
Altmetric has tracked 25,411,814 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,614 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,213 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 540 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.