↓ Skip to main content

Erythropoietin Increases Myelination in Oligodendrocytes: Gene Expression Profiling Reveals Early Induction of Genes Involved in Lipid Transport and Metabolism

Overview of attention for article published in Frontiers in immunology, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Erythropoietin Increases Myelination in Oligodendrocytes: Gene Expression Profiling Reveals Early Induction of Genes Involved in Lipid Transport and Metabolism
Published in
Frontiers in immunology, October 2017
DOI 10.3389/fimmu.2017.01394
Pubmed ID
Authors

Georgina Gyetvai, Trisha Hughes, Florence Wedmore, Cieron Roe, Lamia Heikal, Pietro Ghezzi, Manuela Mengozzi

Abstract

Several studies have shown that erythropoietin (EPO) has neuroprotective or neuroreparative actions on diseases of the nervous system and that improves oligodendrocyte (OL) differentiation and myelination in vivo and in vitro. This study aims at investigating the early molecular mechanisms for the pro-myelinating action of EPO at the gene expression level. For this purpose, we used a differentiating OL precursor cell line, rat central glia-4 cells. Cells were differentiated or not, and then treated with EPO for 1 or 20 h. RNA was extracted and changes in the gene expression profile were assessed using microarray analysis. Experiments were performed in biological replicates of n = 4. Differentiation alone changed the expression of 11% of transcripts (2,663 out of 24,272), representing 2,436 genes, half of which were upregulated and half downregulated. At 20 h of treatment, EPO significantly affected the expression of 99 genes that were already regulated by differentiation and of 150 genes that were not influenced by differentiation alone. Analysis of the transcripts most upregulated by EPO identified several genes involved in lipid transport (e.g., Cd36) and lipid metabolism (Ppargc1a/Pgc1alpha, Lpin1, Pnlip, Lpin2, Ppard, Plin2) along with Igf1 and Igf2, growth factors known for their pro-myelinating action. All these genes were only induced by EPO and not by differentiation alone, except for Pnlip which was highly induced by differentiation and augmented by EPO. Results were validated by quantitative PCR. These findings suggest that EPO might increase remyelination by inducing insulin-like growth factors and increasing lipid metabolism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Student > Master 3 14%
Researcher 3 14%
Student > Bachelor 2 9%
Professor > Associate Professor 1 5%
Other 0 0%
Unknown 9 41%
Readers by discipline Count As %
Neuroscience 5 23%
Medicine and Dentistry 3 14%
Biochemistry, Genetics and Molecular Biology 2 9%
Agricultural and Biological Sciences 1 5%
Unknown 11 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2019.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in immunology
#22,585
of 31,537 outputs
Outputs of similar age
#246,876
of 338,126 outputs
Outputs of similar age from Frontiers in immunology
#453
of 570 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,126 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 570 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.