↓ Skip to main content

Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation

Overview of attention for article published in Frontiers in immunology, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation
Published in
Frontiers in immunology, November 2017
DOI 10.3389/fimmu.2017.01586
Pubmed ID
Authors

Adam Z. Blatt, Gurpanna Saggu, Claudio Cortes, Andrew P. Herbert, David Kavanagh, Daniel Ricklin, John D. Lambris, Viviana P. Ferreira

Abstract

Platelet/granulocyte aggregates (PGAs) increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP) negative regulator, Factor H (FH). Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS), yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP). FH domains 19-20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19-20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19-20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Student > Master 4 18%
Professor 3 14%
Other 1 5%
Lecturer 1 5%
Other 2 9%
Unknown 5 23%
Readers by discipline Count As %
Immunology and Microbiology 4 18%
Medicine and Dentistry 4 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Nursing and Health Professions 2 9%
Agricultural and Biological Sciences 2 9%
Other 3 14%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2017.
All research outputs
#8,430,732
of 25,382,440 outputs
Outputs from Frontiers in immunology
#10,536
of 31,537 outputs
Outputs of similar age
#154,498
of 445,887 outputs
Outputs of similar age from Frontiers in immunology
#250
of 581 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,887 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 581 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.